首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In seasonally flooded wetlands, inundation and associated organic debris deposition followed by a drawdown period can promote plant community diversity across space and time. Post‐flood regeneration might be influenced by the direct effect of flooding on seed dispersal and seedling emergence, as well as the indirect effect of organic debris on seed trapping and germination. Our objective was to examine the influence of seasonal flooding, topography, and organic debris cover on seedling distribution in a seasonally flooded grassland. We measured species richness, seedling abundance, and organic debris cover for 3 yr in a seasonally flooded grassland in the Pantanal, Brazil, at three topographic levels at the end of the flood season and during the dry season when there was no debris deposition. A total of 43 species were recorded, with no difference in species richness detected between seasons. However, the abundance of some species was higher post‐flood than during the dry period. The greatest seedling abundance and richness were found post‐flood at intermediate elevations, followed by high and the lowest elevations. Seed germination and seedling establishment were likely suppressed at low topographic positions due to shading from organic debris and poor drainage. Therefore, areas with predictable annual floods promote diversity by creating spatial and temporal variations in environmental conditions.  相似文献   

2.
Sea level rise may alter salinity and inundation regimes and create patches of open water in oligohaline coastal marshes, potentially affecting the composition and germination of seed bank species. We conducted seedling emergence experiments to: (1) examine the effects of standing vegetation on the seed banks of three oligohaline marsh communities in coastal Louisiana (dominated by Paspalum vaginatum Sw., Sagittaria lancifolia L., or Spartina patens (Ait.) Muhl., respectively); and (2) investigate the effects of salinity and inundation regime on germination of seed bank species. We also studied the effect of a temporary increase in salinity (to simulate a salt water intrusion event) on the viability of buried seeds. We found that the presence or absence of vegetation within a community affected the abundance of some species in the seed bank but had little effect on species composition. Also, the seed banks of the three communities exhibited considerable overlap in species composition and had similar species richness (10–11) and diversity (antilog Shannon-Weaver diversity index = 6.5–7.1), despite differences in vegetation type. Higher salinities and flooding reduced seedling emergence for most species; few species emerged at salinities above four parts per thousand (ppt), and only Sagittaria lancifolia and Eleocharis parvula germinated well under flooded conditions. A temporary increase in salinity did not affect species richness or seedling emergence of most species. Our results suggest that differences in vegetation may have little effect on the composition of seed banks of oligohaline marshes. However, higher salinities and greater depth and duration of inundation (anticipated as global sea level continues to rise) may decrease recruitment of seed bank species, reducing their abundance in oligohaline marsh communities.  相似文献   

3.
Historically, wetlands along the St. Johns River, Florida, were dominated by herbaceous marshes. However, in the last 50 years many areas transformed to shrub‐dominated wetlands, at the same time a system of levees and canals was constructed to control flooding. We tested the role of water management in controlling Carolina willow (Salix caroliniana), a native shrub that accounts for most of this shift. We assessed survival and growth of seedlings and cuttings on four artificial islands. We planted willow seedlings and cuttings at the spring waterline and at three higher levels (+17.5, +35, and +50 cm) and evaluated their responses to natural hydrologic fluctuations. Overall, seedlings had lower survival than cuttings. Highest mortality occurred during summer floods and willows greater than 50 cm above marsh surface had the highest survivorship. Surviving seedlings attained similar height and biomass among elevations, but the cuttings had greater stem diameter, stem height, and biomass at higher elevations. In the second experiment, we planted seedlings and short (25 cm) and tall (50 cm) cuttings at the waterline and at three higher levels (+25, +35, and +50 cm) in artificial ponds with controlled water levels. Before flooding, seedlings at the highest elevation suffered some mortality due to desiccation, but after flooding, they had the highest survival. Elevation did not affect cutting survival, but those at the lowest elevation had the greatest height and biomass. Hydrologic manipulation can be a powerful tool to control willow establishment. However, its success depends on timely and prolonged inundation or water drawdown .  相似文献   

4.
Tree establishment in grazed vegetation mosaics involves a series of early bottlenecks, including seed dispersal, germination, seedling emergence, survival and growth. In a field experiment, we studied seedling emergence of two species with contrasting recruitment strategies, Fraxinus excelsior and Quercus robur, in five structurally different vegetations: grazed and ungrazed grassland, ruderal pioneer vegetation, soft rush tussocks, tall sedge mats and bramble scrub. In a simulation experiment, we studied the interaction effects of pre-emergence flooding (3 weeks of inundation), trampling and grazing (simulated by clipping) of grassland vegetation on the emergence and early growth of both tree species in grass swards. Seedling emergence was enhanced in low swards and sparse vegetation types. Despite different recruitment strategies, the interaction of flooding and trampling of swards enhanced seedling emergence of both species. Grazing of soft rush and tall sedges enhanced emergence of F. excelsior. Clipping grass swards increased early growth of emerging Q. robur. Our results support the hypothesis that natural disturbances of soil and vegetation create microsites for seedling emergence and reduce above-ground competition. In grazed systems however, these results suggest a discordant relationship between successful seedling emergence and subsequent seedling growth/survival during the establishment process in structurally different vegetations.  相似文献   

5.
Griffith  Alan B.  Forseth  Irwin N. 《Plant Ecology》2003,167(1):117-125
Aeschynomene virginica is a rare annual plant found in freshwater tidal wetlands of the eastern United States. We hypothesized that standing vegetation and water inundation were two important environmental factors in its population dynamics. To test these hypotheses, we sowed seeds into plots with undisturbed vegetation or plots with all aboveground vegetation removed in 1998 and 1999. Presence/absence of seedlings was noted and seedling survival to reproduction, final size, and seed set were measured throughout both growing seasons. Seedling establishment from germination to the first true leaf stage increased with decreasing water depth. Vegetation removal plots had greater seedling establishment, higher seedling survival, and higher seed set per plant than non-removal plots. In a greenhouse study designed to test the effects of water level on seed germination and seedling establishment, no seedlings established in submerged soils, and seed germination and seedling establishment were lower in waterlogged soil than in wet soil. Physical stress associated with deeper water likely limits the distribution of A. virginica to higher elevations, where seeds that colonize patches with low vegetative cover are more likely to produce reproductive adults that produce more seeds relative to patches with established vegetation. A. virginica appears to be a fugitive species specializing on open habitat patches in tidal wetlands. This species may be dependent on disturbances for population establishment and maintenance.  相似文献   

6.
1. Seed dispersal, germination, and seedling growth characteristics of six helophyte species. Iris pseudacorus, Phalaris arundinacea, Phragmites australis, Typha angustifolia, T. latifolia and Scirpus lacustris, were investigated in relation to their water-level zonation. 2. The experiments demonstrated a large variation in these characteristics between the species. 3. Propagule floating capacities range from < 1 h (S. lacustris) to > 1000 h (I. pseudacorus). 4. Seed germination in a water-level gradient revealed two groups with respect to germination percentage - exposed soil species (I. pseudacorus, Phalaris arundinacea, Phragmites australis) and submerged soil species (T. angustifolia, T. latifolia). 5. There were two contrasting types of seedling growth response to submergence and exposure: one group of species formed longest leaves under exposed conditions (Phalaris arundinacea, Phragmites australis, I. pseudacorus), and the other under submerged conditions (S. lacustris, T. latifolia, T. angustifolia). 6. The results suggest that early life-history characteristics of the species relate to their locations in the riparian zonation: Phalaris arundinacea and Iris pseudacorus at the higher end, Phragmites australis intermediate, and Typha spp. and Scirpus lacustris at the lower end. Species occurring at lower locations show adaptations to (periodical) flooding of the soil (submersed germination and growth), while those from higher locations require prolonged exposed soil conditions to germinate and to survive the establishment stage.  相似文献   

7.
Past research has provided compelling evidence that variation in flooding duration is the predominant factor underlying plant species distribution along elevation gradients in river floodplains. The role of seasonal variation in flooding, however, is far from clear. We addressed this seasonal effect for 10 grassland species by testing the hypothesis that all species can survive longer when flooded in winter than when flooded in summer. We carried out an inundation experiment under simulated conditions of summer and winter flooding in the greenhouse. The results showed that all species survived longer under winter floods than under summer floods. However, responses upon flooding were species-specific. All summer flood-tolerant species had high tolerance for winter floods as well, but summer flood sensitive species survived either a little longer, or dramatically longer when flooded under simulated winter conditions. Next, we examined whether winter or summer survival best predicted the lower distribution limits of the species as measured in a natural flooding gradient after an extremely long winter flood. We found a strong significant relationship between the lower distribution limits of species in the field and their tolerance to summer floods, although we measured the lower limits 14 years after the latest major summer flood. In contrast, no such significant relationship existed with species tolerance to winter floods. Some relatively intolerant species occurred at much higher floodplain elevations as was expected from their tolerance to winter inundation in the experiments. This suggests that zonation patterns as created by occasional summer floods may be maintained for a long time, probably due to the limited ability of species to re-colonise lower positions in the floodplain.  相似文献   

8.
In shallow flooded parts of rich fens Mentha aquatica might thrive in deeper water than Epilobium hirsutum but previous experiments have provided no clear indication that the flooding tolerance of these species differs. In this study we investigated, by measuring growth, biomass allocation and vegetative reproduction, whether the impact of water level on vegetative reproduction might produce different lower boundaries on water level gradients. There was a striking contrast between biomass production at high water levels and the field distribution of both species. After 18 wk, the mean biomass of E. hirsutum grown in waterlogged and flooded conditions was 82% and 54%, respectively, of the mean biomass production of drained plants. Biomass of waterlogged and flooded M. aquatica was reduced to 57% and 37% in drained conditions. Waterlogged and flooded E. hirsutum had swollen stem bases and invested a high proportion of biomass in adventitious roots. Stems of M. aquatica did not swell, formed few adventitious roots and maintained an equal proportion of below-ground roots at all water levels. The effect of water level on vegetative reproduction corresponded well with the lower hydrological boundaries of both species. When waterlogged and flooded, most rhizomes of E. hirsutum emerged from above-ground parts of the stem base and were oriented in an upward direction. Plants in flooded soil allocated less biomass to rhizomes and also reduced the number and size of rhizomes. Rhizome formation of M. aquatica on the other hand was not directly affected by water level and only depended on plant size. These differences in vegetative reproduction are discussed in relation to the different abilities of both species to oxygenate their below-ground roots. It was concluded that the mode of adaptation to soil flooding might also affect vegetative reproduction and, therefore, a species' ability for long-term persistence in soil-flooded habitats.  相似文献   

9.
Himatanthus sucuuba is a tree species that occurs in Central Amazonian white water floodplains and in non-flooded uplands. The objective of this paper was to verify whether flooding causes differences in germination percentages, seedling mortality as well as alterations of leaf number and biomass increments, related to the habitat of origin of the seeds (várzea floodplain versus terra firme upland, in the following V and TF, respectively). To test this effect, seeds from populations of both habitats were collected, and germination percentages were calculated under different experimental conditions. One hundred seeds collected in three sites of the floodplain and one hundred seeds from three sites of the upland were placed in trays for germination in a greenhouse in the Amazon Research Institute (INPA) in Manaus, Brazil. Seedlings with a height of 7 cm were then subjected to a period of 120 days of flooding in tanks with three treatments: control, waterlogging (root system and the base of the stem), and complete submersion. Ground water from the INPA was used in the tanks and was changed at weekly intervals. Germination percentages were high in most treatments. Seedling mortality was significantly higher in seedlings originating from upland, reaching 100% in submerged seedlings. On the other hand, várzea-originated seedlings showed no mortality under waterlogging or submergence.

Height growth of waterlogged seedlings from floodplains exceeded that of the control. Submerged seedlings did not grow, independently of the origin, and those originating from uplands died after about 100 days. Number of leaves and leaf area were significantly lower under partial submersion than in the control, independently of the origin of the seeds. Under total submersion abscission of all leaves was verified 30 days after inundation for seedlings of both origins. In the V population, all seedlings survived the waterlogged period, whereas in the TF population, 30% of the seedlings died when subjected to waterlogging. With complete submergence, in the V population 30% of the seedlings had died after 120 days, in the TF population after 90 days mortality was 100%. The results show that germination, seedling growth and seedling survival in H. sucuuba differ among populations of floodplain and upland sites: V plants performed better than TF plants under waterlogging and under submersion. The results strongly indicate that ecotypic differentiation exists between these two populations of H. sucuuba individuals in the two habitat types, which may be enforced by a strong selective pressure due to the regular occurring flood pulse.  相似文献   


10.
Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l−1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.  相似文献   

11.
Carex rugulosa Kük. forms large meadows in moist zones along estuarine riversides. These meadows are usually maintained by rhizomatous ramet production (clonal growth), and the appearance of seedlings is uncommon. We studied the conditions required for seedling establishment. In areas in which clonal ramets were dense (906–1050/m2), and the relative light intensity at ground level was low (0.8–3.8%), seed germination was entirely suppressed. In contrast, many seedlings (288–513/m2) were observed in areas in which clonal ramets had been considerably reduced (13–269/m2) by continuous inundation in the previous year. In these areas, the relative light intensity had increased (20.5–79.3%). It was inferred that seeds resisted the prolonged inundation that killed the ramets, and that germination was induced under these open conditions. These results suggest that the main functions of sexual reproduction in C. rugulosa are recovery after severe damage to vegetation using seeds from the seed bank and the dispersal of seeds to areas without dense vegetation. Most seedlings died when the marshy meadow was temporarily inundated by heavy rain. However, transplanted seedlings survived better at artificially elevated sites that were not submerged. This shows that inundation during the seedling stage impedes seedling survival. Therefore, seeds can contribute to recovery after ramet decline or colonization to open area when (i) the rainfall is not heavy to cause seedling submergence or (ii) seeds are dispersed to higher area which is not inundated.  相似文献   

12.
1. Effects of the frequency and duration of flooding on the structural and functional characteristics of riparian vegetation were studied at four sites (n = 80, 50 × 50 cm, plots) along medium‐sized naturally meandering lowland streams. Special focus was on rich fens, which – due to their high species richness – are of high priority in nature conservation. 2. Reed beds, rich fens and meadows were all regularly flooded during the 20‐year study period, with a higher frequency in reed bed areas than in rich fen and meadow areas. In rich fens, species richness was higher in low frequency flooded areas (≤3 year?1) than in areas with a high frequency of flooding (>3 year?1) or no flooding, whereas species richness in reed beds and meadows was unaffected by flood frequency. 3. The percentage of stress‐tolerant species was higher in low intensity flooded rich fen areas than in high intensity and non‐flooded areas, indicating that the higher species richness in low frequency flooded rich fens was caused by competitive release. We found no indication that increased productivity was associated with high flooding frequencies. 4. We conclude that the restoration of morphological features in stream channels to increase the flooding regime can be beneficial for protected vegetation within riparian areas, but also that groundwater discharge thresholds and critical levels for protected vegetation should be identified and considered when introducing stream ecosystem restoration plans.  相似文献   

13.
14.
Knowledge of how germination and seedling establishment respond to soil water condition is crucial for plant conservation under global warming and land-use changes. We tested the flooding and drought tolerance of two plant species with different occurrences along a soil water gradient by assessing seed germination, seedling survival, seedling growth, and root characteristics. In the high Sino-Himalayas, Rheum alexandrae typically occurs in wetlands, R. nobile in scree or open slope with well-drained soils. Seeds and seedlings of the two species were subjected to different soil water conditions in controlled greenhouse experiments. Seed germination in both species was inhibited by high soil water content; however, seeds of R. alexandrae were more tolerant to flooding, especially to submergence. Seedling survival, biomass accumulation, root diameter, and root porosity of R. alexandrae increased significantly with increased soil water content, but submergence was lethal for seedlings. Seedling survival, biomass accumulation, and root length of R. nobile increased significantly in response to reduced soil water content. These results indicate that in the two species, seed germination and seedling establishment in response to different soil water condition are habitat-specific. Because both species are susceptible to moderate changes in soil water condition, their species-specific requirements with respect to this factor should be a consideration when planning their conservation.  相似文献   

15.
The large river swamps of Louisiana have complex topography and hydrology, characterized by black willow (Salix nigra) dominance on accreting alluvial sediments and vast areas of baldcypress (Taxodium distichum) deepwater swamps with highly organic substrates. Seedling survival of these two wetland tree species is influenced by their growth rate in relation to the height and duration of annual flooding in riverine environments. This study examines the interactive effects of substrate, hydroperiod, and nutrients on growth rates of black willow and baldcypress seedlings. In a greenhouse experiment with a split-split-plot design, 1-year seedlings of black willow and baldcypress were subjected to two nutrient treatments (unfertilized versus fertilized), two hydroperiods (continuously flooded versus twice daily flooding/draining), and two substrates (sand versus commercial peat mix). Response variables included height, diameter, lateral branch count, biomass, and root:stem ratio. Black willow growth in height and diameter, as well as all biomass components, were significantly greater in peat substrate than in sand. Black willow showed a significant hydroperiod–nutrient interaction wherein fertilizer increased stem and root biomass under drained conditions, but flooded plants did not respond to fertilization. Baldcypress diameter and root biomass were higher in peat than in sand, and the same two variables increased with fertilization in flooded as well as drained treatments. These results can be used in Louisiana wetland forest models as inputs of seedling growth and survival, regeneration potential, and biomass accumulation rates of black willow and baldcypress.  相似文献   

16.
Resistance to complete submergence was tested in three Rumex species that occur in the Dutch river forelands. The species differ in both habitat and life history characteristics. The annual or biennial R. maritimus and the biennial or short lived perennial R. palustris grow on frequently flooded mud flats of low elevation, while the perennial R. thyrsiflorus can be found on dykes and river dunes that are seldom flooded. The flooding characteristics of the habitats of the three species were determined. These data were used to design experiments to determine the survival and biomass development of the three species during submergence and the influence of plant size and light level on these parameters. It was shown in all three species that plants submerged during daytime were much more resistant to flooding than those submerged at night. This is most probably due to the generation of oxygen or carbohydrates by underwater photosynthesis. Mature plants of the three species showed higher survival after submergence than juvenile plants, which might be caused by higher carbohydrate levels in the taproots of mature plants. In addition, the three species clearly differed in survival and biomass development during submergence. Rumex thyrsiflorus , the species least subjected to flooding, is least tolerant to complete submergence. Rumex maritimus , which can avoid the floods by having a short life cycle, is less tolerant to submergence than R. palustris , which has to survive the floods as a vegetative plant. It was noted that some plants that survived the flooding period itself, still died in the following period of drained conditions, possibly due to post-anoxic injury.  相似文献   

17.
塔里木河中游洪水漫溢区荒漠河岸林实生苗更新   总被引:2,自引:1,他引:1  
赵振勇  张科  卢磊  周生斌  张慧 《生态学报》2011,31(12):3322-3329
以塔里木河中游荒漠河岸林为研究对象,2008年6月至2009年8月,对洪水漫溢区河漫滩裸地、林下及林隙三种生境植物一年生实生苗进行了调查。结果表明:实生苗更新主要依赖洪水漫溢,在非漫溢区没有发现实生苗存在;洪水降低了漫溢区的土壤盐度,更重要的是其提供了宝贵的水分条件,在时间和水量上都有效地满足了胡杨等植物种子萌发和幼株生长的水分需求;河漫滩是河岸林种子实生苗产生的基地,洪水漫溢后的河漫滩种子实生苗密度显著大于其余两生境内实生苗密度,同时该生境内物种多样性也显著高于林下和林隙生境;光照决定着漫溢区实生苗能否成林,光照不同的空间样点上,实生苗发生数量和个体生长均存在显著差异,光照强的河漫滩,实生苗发生数量较多且幼苗能保持较高的生长活力和较多的生物量积累。  相似文献   

18.
Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.  相似文献   

19.
The potential for improving the performance of seedlings of woody species under flood stress was evaluated. Seedlings of baldcypress (Taxodium distichum), nuttall oak (Quercus nuttallii), and swamp chestnut oak (Quercus michauxii) were subjected to a two-phase study in which soil moisture regime was controlled. During Phase I, plants were randomly assigned to either: Control, well-watered and drained conditions; or intermittent flooding, alternating flooding and drained conditions. Following completion of Phase I, seedlings in each treatment were assigned randomly to one of two treatments: well-watered but drained or continuously flooded. Thus during Phase II, plants were divided into four groups: Control (A), intermittent flooding during Phase I and draining during Phase II (B), control during Phase I and continuously flooding during Phase II (C), and intermittently flooded during Phase I and continuously flooded during Phase II (D). Stomatal conductance (gw) in baldcypress increased in flooded treatments ranging from 112 to 128 percnt; of controls. Net photosynthesis (Pn) in baldcypress was not significantly affected by flooding while in oaks, Pn and gw decreased significantly in response to flooding. In oaks, flood pre-conditioning did not affect growth or physiological responses during phase II significantly. However, stomatal conductance of flood-hardened baldcypress was increased compared to seedlings that were not hardened. The study species developed significantly higher root porosity under flooded conditions compared to controls. Flood pre-conditioning did not appear to increase root porosity although it may have accelerated the process.  相似文献   

20.
Abstract. The objective of this study was to investigate the effects of flooding and draw‐down on the germination from the coastal grassland seed banks and to determine whether the effect of flooding varies between the delta and the seashore. Seed bank samples were collected from three shore transects in SW Finland, two on the shore of the Baltic Sea and one on the delta of River Kokemäenjoki. Samples were germinated in non‐flooded and flooded conditions for over a month, after which both treatments were maintained in non‐flooded conditions. A total of 9267 seedlings of 47 species germinated and mean density of seeds in the soil was ca. 84 000/m2. Most of the seedlings were monocots (98%) and perennials (98%). Ca. 30–40% of the species found in the above‐ground vegetation had a seed bank including the majority of the most abundant species. The number of seeds and species richness increased as the organic layer became thicker. The organic layer was thicker in the seashore samples and the seed bank was significantly larger than in the delta. The flooding and draw‐down treatment significantly increased the number of germinating seedlings in the seashore and also increased species richness in two transects, one in the delta and the other in the seashore. Two species, Schoenoplectus tabernaemontani and Typha latifolia, had significantly higher germination in the flooded treatment than in the non‐flooded. Apparently, many species in these coastal grasslands have adapted to flood disturbance and for seeds of some species flooding may work as a positive signal, possibly breaking dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号