首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.  相似文献   

2.
Rapid evolution has been identified for many reproductive genes and recent studies have combined phylogenetic tests and information on species mating systems to test sexual selection. Here we examined the molecular evolution of the ADAM gene family, a diverse group of 35 proteins capable of adhesion to and cleavage of other proteins, using sequence data from 25 mammalian genes. Out of the 25 genes analyzed, all those expressed in male reproductive tissue showed evidence of positive selection. Positively selected amino acids within the protein adhesion domain were only found in sperm surface ADAM proteins (ADAMs 1, 2, 3, 4, and 32) suggesting selection driven by male × female interactions. We tested heterogeneity in rates of evolution of the adhesion domain of ADAM proteins by using sequence data from Hominidae and macaques. The use of the branch and branch-site models (PAML) showed evidence of higher d N/d S and/or positive selection linked to branches experiencing high postmating selective pressures (chimpanzee and macaque) for Adams 2, 18, and 23. Moreover, we found consistent higher proportion of nonsynonymous relative to synonymous and noncoding sequence substitutions in chimpanzee and/or macaque only for Adams 2, 18, and 23. Our results suggest that lineage-specific sexual selection bouts might have driven the evolution of the adhesion sperm protein surface domains of ADAMs 2 and 18 in primates. Adams 2 and 18 are localized in chromosome 8 of primates and adjacent to each other, so their evolution might have also been influenced by their common genome localization.  相似文献   

3.
Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.  相似文献   

4.
Many genes with a role in reproduction, including those implicated in fertilization and spermatogenesis, have been shown to evolve at a faster rate relative to genes associated with other functions and tissues. These survey studies usually group a wide variety of genes with different characteristics and evolutionary histories as reproductive genes based on their site of expression or function. We have examined the molecular evolution of the ADAM (a disintegrin and metalloprotease) gene family, a structurally and functionally diverse group of genes expressed in reproductive and somatic tissue to test whether a variety of protein characteristics such as phylogenetic clusters, tissue of expression, and proteolytic and adhesive function can group fast evolving ADAM genes. We found that all genes were evolving under purifying selection (d(N)/d(S) < 1), although reproductive ADAMs, including those implicated in fertilization and spermatogenesis, evolved at the fastest rate. Genes with a role in binding to cell receptors in endogenous tissue appear to be evolving under purifying selection, regardless of the tissue of expression. In contrast, positive selection of codon sites in the disintegrin/cysteine-rich adhesion domains was detected exclusively in ADAMs 2 and 32, two genes expressed in the testis with a potential role in sperm-egg adhesion. Positive selection was detected in the transmembrane/cytosolic tail region of ADAM genes expressed in a variety of tissues.  相似文献   

5.
《Genomics》2020,112(5):3108-3116
The ADAM (A Disintegrin And Metalloprotease) gene family encodes proteins with adhesion and proteolytic functions. ADAM proteins are associated with diseases like cancers. Twenty ADAM genes have been identified in humans. However, little is known about the evolution of the family. We analyzed the repertoire of ADAM genes in a vast number of eukaryotic genomes to clarify the main gene copy number expansions. For the first time, we provide compelling evidence that early-branching green algae (Mamiellophyceae) have ADAM genes, suggesting that they originated in the last common ancestor of eukaryotes, before the split of plants, fungi and animals. The ADAM family expanded in early metazoans, with the most significative gene expansion happening during the first steps of vertebrate evolution. We concluded that most of mammal ADAM diversity can be explained by gene duplications in early bone fish. Our data suggest that ADAM genes were lost early in green plant evolution.  相似文献   

6.

Background and Aims

The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized.

Methods

Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato.

Key Results

Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family.

Conclusions

This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants.  相似文献   

7.
Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species.  相似文献   

8.
Sm proteins are a group of ubiquitous ring-shaped oligomers that function in multiple aspects of RNA metabolism. However, until this study, no comprehensive study incorporating phylogeny, chromosomal location, gene organization, adaptive evolution, expression profiling and functional networks has been reported for rice and maize. In this study, twenty-five and thirty-three Sm genes have been identified in rice and maize, respectively. Phylogenetic analyses identified eighteen gene groups. Results by gene locations indicated that segmental duplication contributes to the expansion of this gene family in rice and maize. Gene organization and motif compositions of the Sm members are highly conserved in each group, indicative of their functional conservation. Expression profiles have provided insights into the possible functional divergence among members of the Sm gene family. Adaptive evolution analyses suggested that purifying selection was the main force driving Sm evolution, but some critical sites might be responsible for functional divergence. In addition, four hundred and seventy-nine interactions were identified by functional network analyses, and most of which were associated with binding, cellular macromolecule biosynthesis, pre-mRNA processing and transferase activity. Overall, the data contribute to a better understanding of the complexity of Sm gene family in rice and maize and will provide a solid foundation for future functional studies.  相似文献   

9.
A genome triplication took place in the ancestor of Brassiceae species after the split of the Arabidopsis lineage. The postfragmentation and shuffling of the genome turned the ancestral hexaploid back to diploids and caused the radiation of Brassiceae species. The course of speciation was accompanied by the loss of duplicate genes and also influenced the evolution of retained genes. Of all the genes, those encoding NBS domains are typical R genes that confer resistance to invading pathogens. In this study, using the genome of Arabidopsis thaliana as a reference, we examined the loss/retention of orthologous NBS-encoding loci in the tripled Brassica rapa genome and discovered differential loss/retention frequencies. Further analysis indicated that loci of different retention ratios showed different evolutionary patterns. The loci of classesII and III (maintaining two and three syntenic loci, respectively, multi-loci) show sharper expansions by tandem duplications, have faster evolutionary rates and have more potential to be associated with novel gene functions. On the other hand, the loci that are retained at the minimal rate (keeping only one locus, class I, single locus) showed opposite patterns. Phylogenetic analysis indicated that recombination and translocation events were common among multi-loci in B. rapa, and differential evolutionary patterns between multi- and single-loci are likely the consequence of recombination. Investigations towards other gene families demonstrated different evolutionary characteristics between different gene families. The evolution of genes is more likely determined by the property of each gene family, and the whole genome triplication provided only a specific condition.  相似文献   

10.
11.
Hyaloscyphaceae is the largest family in Helotiales, Leotiomycetes. It is mainly characterized by minute apothecia with well-differentiated hairs, but its taxonomic delimitation and infrafamilial classification remain ambiguous. This study performed molecular phylogenetic analyses using multiple genes including the ITS-5.8S rDNA, the D1–D2 region of large subunit of rDNA, RNA polymerase II subunit 2, and the mitochondrial small subunit. The primary objective was to evaluate the phylogenetic utility of morphological characters traditionally used in the taxonomy of Hyaloscyphaceae through reassessment of the monophyly of this family and its genera. The phylogenetic analyses inferred Hyaloscyphaceae as being a heterogeneous assemblage of a diverse group of fungi and not supported as monophyletic. Among the three tribes of Hyaloscyphaceae only Lachneae formed a monophyletic lineage. The presence of hairs is rejected as a synapomorphy, since morphologically diversified hairs have originated independently during the evolution of Helotiales. The true- and false-subiculum in Arachnopezizeae are hypothesized to have evolved through different evolutionary processes; the true-subiculum is likely the product of a single evolutionary origin, while the false-subiculum is hypothesized to have originated multiple times. Since Hyaloscyphaceae sensu lato was not resolved as monophyletic, Hyaloscyphaceae sensu stricto is redefined and only applied to the genus Hyaloscypha.  相似文献   

12.
Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-protein interaction. In this study, we identified that the expansion of FLZ gene family size in different species is correlated with ancestral and lineage-specific whole genome duplication events. The subsequent gene loss found to have a greater role in determining the size of this gene family in many species. However, genomic block duplications played the significant role in the expansion of FLZ gene family in some species. Comparison of Arabidopsis thaliana and Oryza sativa FLZ gene family revealed monocot and dicot specific evolutionary trends. The FLZ genes were found to be under high purifying selection. The spatiotemporal expression analyses of Arabidopsis thaliana FLZ gene family revealed that majority of the members are highly expressed in reproductive organs. FLZ genes were also found to be highly expressed during vegetative-to-reproductive phase transition which is correlated with the proposed role of this gene family in sugar signaling. The comparison of sequence, structural and expression features of duplicated genes identified lineage-specific redundancy and divergence. This extensive evolutionary analysis and expression analysis of Arabidopsis thaliana FLZ genes will pave the way for further functional analysis of FLZ genes.  相似文献   

13.
14.
15.
16.
Han F  Zhu B 《Gene》2011,473(1):23-35
GAs are plant hormones that play fundamental roles in plant growth and development. GA2ox, GA3ox, and GA20ox are three key enzymes in GA biosynthesis. These enzymes belong to the 2OG-Fe (II) oxygenase superfamily and are independently encoded by different gene families. To date, genome-wide comparative analyses of GA oxidases in plant species have not been thoroughly carried out. In the present work, 61 GA oxidase family genes from rice (Oryza sativa), Arabidopsis, and soybean (Glycine max) were identified and a full study of these genes including phylogenetic tree construction, gene structure, gene family expansion and analysis of functional motifs was performed. Based on phylogeny, most of the GA oxidases were divided into four subgroups that reflected functional classifications. Intron/intron average length of GA oxidase genes in rice analysis revealed that GA oxidase genes in rice experienced substantial evolutionary divergence. Segmental duplication events were mainly found in soybean genome. However, in rice and Arabidopsis, no single expansion pattern exhibited dominance, indicating that GA oxidase genes from these species might have been subjected to a more complex evolutionary mechanism. In addition, special functional motifs were discovered in GA20ox, GA3ox, and GA2ox, which suggested that different functional motifs are associated with differences in protein function. Taken together our results suggest that GA oxidase family genes have undergone divergent evolutionary routes, especially at the monocot-dicot split, with dynamic evolution occurring in Arabidopsis thaliana and soybean.  相似文献   

17.
Extensive gene duplication arranged in a tandem array is rare in the plastome of embryophytes. Interestingly, we found pseudogene copies of the trnF gene in the genus Jaltomata, the sister genus of Solanum where such gene duplication has been previously reported. In each Jaltomata sequence available we found two pseudogene copies in close 5′-proximity to the original functional gene. The size of each pseudogene copy ranged between 17 and 48 bp and the anticodon domain was identified as the most conserved element. A common ATT(G)n motif is particularly interesting and its modifications were found to border the 3′ of the duplicated regions. Other motifs were partial residues, or entire parts of the T- and D-domains, and both domains proved to be variable in length among the pseudogenes identified. The residues of the 3′ and 5′ acceptor stem were not found among the copies. We further compared the newly discovered copies of Jaltomata with those ones previously described from Solanum and inferred phylogenetic relationships of the copies aligned. The evolution of Solanum copies, in contrast to Jaltomata, is hard to explain as resulting only in parsimonious changes since reticulate evolutionary patterns were detected among the copies. The dynamic evolutionary patterns of Solanum might be explained by possible inter- or intrachromosomal recombination.  相似文献   

18.
Complement factor H (CFH) is an essential regulator of the complement system and plays very important roles in animal innate immunity. Although the complement system of amphioxus has been extensively studied, the expression in amphioxus and evolution of CFH gene remain unknown. In this study, we identified and characterized an amphioxus (Branchiostoma belcheri) CFH gene (designated as AmphiCFH). Our results showed that the full-length cDNA of AmphiCFH gene consists of 1295 bp nucleotides containing an 855 bp open reading frame (ORF) that was predicted to encode a 284 amino acid protein. The putative AmphiCFH protein possessed the characteristic of the CFH protein family, including typical CCP (complement control protein) domain. Real-time PCR analysis showed that the AmphiCFH was ubiquitously and differentially expressed in five investigated tissues (intestine, gills, notochord, muscles, and hepatic cecum). The expression level of the AmphiCFH gene was induced upon lipopolysaccharide stimulation, indicating that the AmphiCFH gene might be involved in innate immunity. In addition, phylogenetic analysis showed that the AmphiCFH gene was located between that of invertebrates and vertebrates, suggesting that the AmphiCFH gene is a member of the CFH gene family. In conclusion, our findings provided an insight into animal innate immunity and evolution of the CFH gene family.  相似文献   

19.
Lactic acid bacteria (LAB) represent a functional group of bacteria that are fundamental in human nutrition because of their prominent role in fermented food production and their presence as commensals in the gut. LAB co-evolution and niche-adaptation have been analyzed in several phylogenomic studies due to the availability of complete genome sequences. The aim of this study was to provide novel insights into LAB evolution through the comparative analysis of the metabolic pathways related to carbohydrate metabolism. The analysis was based on 42 LAB genome sequences of representative strains belonging to Enterococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae. A reference phylogenetic tree was inferred from concatenation of 42 ribosomal proteins; then 42 genes belonging to the Embden–Meyerhof–Parnas (or glycolysis; EMPP) and pentose phosphate (PPP) pathways were analyzed in terms of their distribution and organization in the genomes. Phylogenetic analyses confirmed the paraphyly of the Lactobacillaceae family, while the distribution and organization of the EMPP and PPP genes revealed the occurrence of lineage-specific trends of gene loss/gain within the two metabolic pathways examined. In addition, the investigation of the two pathways as structures resulting from different evolutionary processes provided new information concerning the genetic bases of heterofermentative/homofermentative metabolism.  相似文献   

20.
In contrast to the extreme conservation of nuclear-encoded tRNAs, organization of the mitochondrial (mt) tRNA gene family in invertebrates is highly dynamic and rapidly evolving. While gene duplication and loss, gene isomerism, recruitment, and rearrangements have occurred sporadically in several invertebrate lineages, little is known regarding the pattern of their evolution. Comparisons of invertebrate mt genomes at a generic level can be extremely helpful in investigating evolutionary patterns of variation, as intermediate stages of the process may be identified. Variation of mitochondrial tRNA organization among Meretrix clams provides good materials to investigate mt tRNA evolution. We characterized the complete mt genome of the lyrate Asiatic hard clam Meretrix lyrata, re-annotated tRNAs of four previously sequenced Meretrix clams, and undertook an intensive comparison of tRNA gene families in these clams. Our results 1) provide evidence that the commonly observed duplication of trnM may have occurred independently in different bivalve lineages and, based on the higher degree of trnM gene similarity, may have occurred more recently than expected; 2) suggest that “horizontal” evolution may have played an important role in tRNA gene family evolution based on frequent gene duplications and gene recruitment events; and 3) reveal the first case of isoacceptor “vertical” tRNA gene recruitment (VTGR) and present the first clear evidence that VTGR allows rapid evolution of tRNAs. We identify the trnS− UCR gene in Meretrix clams, previously considered missing in this lineage, and speculate that trnS− UCR lacking the D-arm in both M. lyrata and Meretrix lamarckii may represent the ancestral status. Phylogenetic analysis based on 13 concatenate protein-coding genes provided opportunities to detect rapidly evolved tRNA genes via VTGR and gene isomerism processes. This study suggests that evolution of the mt tRNA gene family in bivalves is more complex than previously thought and that comparison of several congeneric species is a useful strategy in investigating evolutionary patterns and dynamics of mt tRNA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号