首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haplotype information plays an important role in many genetic analyses. However, the identification of haplotypes based on sequencing methods is both expensive and time consuming. Current sequencing methods are only efficient to determine conflated data of haplotypes, that is, genotypes. This raises the need to develop computational methods to infer haplotypes from genotypes.Haplotype inference by pure parsimony is an NP-hard problem and still remains a challenging task in bioinformatics. In this paper, we propose an efficient ant colony optimization (ACO) heuristic method, named ACOHAP, to solve the problem. The main idea is based on the construction of a binary tree structure through which ants can travel and resolve conflated data of all haplotypes from site to site. Experiments with both small and large data sets show that ACOHAP outperforms other state-of-the-art heuristic methods. ACOHAP is as good as the currently best exact method, RPoly, on small data sets. However, it is much better than RPoly on large data sets. These results demonstrate the efficiency of the ACOHAP algorithm to solve the haplotype inference by pure parsimony problem for both small and large data sets.  相似文献   

2.
A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes.  相似文献   

3.
This paper studies haplotype inference by maximum parsimony using population data. We define the optimal haplotype inference (OHI) problem as given a set of genotypes and a set of related haplotypes, find a minimum subset of haplotypes that can resolve all the genotypes. We prove that OHI is NP-hard and can be formulated as an integer quadratic programming (IQP) problem. To solve the IQP problem, we propose an iterative semidefinite programming-based approximation algorithm, (called SDPHapInfer). We show that this algorithm finds a solution within a factor of O(log n) of the optimal solution, where n is the number of genotypes. This algorithm has been implemented and tested on a variety of simulated and biological data. In comparison with three other methods, (1) HAPAR, which was implemented based on the branching and bound algorithm, (2) HAPLOTYPER, which was implemented based on the expectation-maximization algorithm, and (3) PHASE, which combined the Gibbs sampling algorithm with an approximate coalescent prior, the experimental results indicate that SDPHapInfer and HAPLOTYPER have similar error rates. In addition, the results generated by PHASE have lower error rates on some data but higher error rates on others. The error rates of HAPAR are higher than the others on biological data. In terms of efficiency, SDPHapInfer, HAPLOTYPER, and PHASE output a solution in a stable and consistent way, and they run much faster than HAPAR when the number of genotypes becomes large.  相似文献   

4.
Haplotyping as perfect phylogeny: a direct approach.   总被引:4,自引:0,他引:4  
A full haplotype map of the human genome will prove extremely valuable as it will be used in large-scale screens of populations to associate specific haplotypes with specific complex genetic-influenced diseases. A haplotype map project has been announced by NIH. The biological key to that project is the surprising fact that some human genomic DNA can be partitioned into long blocks where genetic recombination has been rare, leading to strikingly fewer distinct haplotypes in the population than previously expected (Helmuth, 2001; Daly et al., 2001; Stephens et al., 2001; Friss et al., 2001). In this paper we explore the algorithmic implications of the no-recombination in long blocks observation, for the problem of inferring haplotypes in populations. This assumption, together with the standard population-genetic assumption of infinite sites, motivates a model of haplotype evolution where the haplotypes in a population are assumed to evolve along a coalescent, which as a rooted tree is a perfect phylogeny. We consider the following algorithmic problem, called the perfect phylogeny haplotyping problem (PPH), which was introduced by Gusfield (2002) - given n genotypes of length m each, does there exist a set of at most 2n haplotypes such that each genotype is generated by a pair of haplotypes from this set, and such that this set can be derived on a perfect phylogeny? The approach taken by Gusfield (2002) to solve this problem reduces it to established, deep results and algorithms from matroid and graph theory. Although that reduction is quite simple and the resulting algorithm nearly optimal in speed, taken as a whole that approach is quite involved, and in particular, challenging to program. Moreover, anyone wishing to fully establish, by reading existing literature, the correctness of the entire algorithm would need to read several deep and difficult papers in graph and matroid theory. However, as stated by Gusfield (2002), many simplifications are possible and the list of "future work" in Gusfield (2002) began with the task of developing a simpler, more direct, yet still efficient algorithm. This paper accomplishes that goal, for both the rooted and unrooted PPH problems. It establishes a simple, easy-to-program, O(nm(2))-time algorithm that determines whether there is a PPH solution for input genotypes and produces a linear-space data structure to represent all of the solutions. The approach allows complete, self-contained proofs. In addition to algorithmic simplicity, the approach here makes the representation of all solutions more intuitive than in Gusfield (2002), and solves another goal from that paper, namely, to prove a nontrivial upper bound on the number of PPH solutions, showing that that number is vastly smaller than the number of haplotype solutions (each solution being a set of n pairs of haplotypes that can generate the genotypes) when the perfect phylogeny requirement is not imposed.  相似文献   

5.
The Pure Parsimony Haplotyping (PPH) problem is a NP-hard combinatorial optimization problem that consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. PPH has attracted more and more attention in recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from mapping complex disease genes to inferring population histories, passing through designing drugs, functional genomics and pharmacogenetics. In this article we investigate, for the first time, a recent version of PPH called the Pure Parsimony Haplotype problem under Uncertain Data (PPH-UD). This version mainly arises when the input genotypes are not accurate, i.e., when some single nucleotide polymorphisms are missing or affected by errors. We propose an exact approach to solution of PPH-UD based on an extended version of Catanzaro et al.[1] class representative model for PPH, currently the state-of-the-art integer programming model for PPH. The model is efficient, accurate, compact, polynomial-sized, easy to implement, solvable with any solver for mixed integer programming, and usable in all those cases for which the parsimony criterion is well suited for haplotype estimation.  相似文献   

6.
Haplotype phasing is one of the most important problems in population genetics as haplotypes can be used to estimate the relatedness of individuals and to impute genotype information which is a commonly performed analysis when searching for variants involved in disease. The problem of haplotype phasing has been well studied. Methodologies for haplotype inference from sequencing data either combine a set of reference haplotypes and collected genotypes using a Hidden Markov Model or assemble haplotypes by overlapping sequencing reads. A recent algorithm Hap-seq considers using both sequencing data and reference haplotypes and it is a hybrid of a dynamic programming algorithm and a Hidden Markov Model (HMM), which is shown to be optimal. However, the algorithm requires extremely large amount of memory which is not practical for whole genome datasets. The current algorithm requires saving intermediate results to disk and reads these results back when needed, which significantly affects the practicality of the algorithm. In this work, we proposed the expedited version of the algorithm Hap-seqX, which addressed the memory issue by using a posterior probability to select the records that should be saved in memory. We show that Hap-seqX can save all the intermediate results in memory and improves the execution time of the algorithm dramatically. Utilizing the strategy, Hap-seqX is able to predict haplotypes from whole genome sequencing data.  相似文献   

7.
Case-control studies are used to map loci associated with a genetic disease. The usual case-control study tests for significant differences in frequencies of alleles at marker loci. In this paper, we consider the problem of comparing two or more marker loci simultaneously and testing for significant differences in haplotype rather than allele frequencies. We consider two situations. In the first, genotypes at marker loci are resolved into haplotypes by making use of biochemical methods or by genotyping family members. In the second, genotypes at marker loci are not resolved into haplotypes, but, by assuming random mating, haplotypes can be inferred using a likelihood method such as the expectation-maximization (EM) algorithm. We assume that a causative locus has two alleles with a multiplicative effect on the penetrance of a disease, with one allele increasing the penetrance by a factor pi. We find, for small values of pi-1 and large sample sizes, asymptotic results that predict the statistical power of a test for significant differences in haplotype frequencies between cases and a random sample of the population, both when haplotypes can be resolved and when haplotypes have to be inferred. The increase in power when haplotypes can be resolved can be expressed as a ratio R, which is the increase in sample size needed to achieve the same power when haplotypes are resolved over when they are not resolved. In general, R depends on the pattern of linkage disequilibrium between the causative allele and the marker haplotypes but is independent of the frequency of the causative allele and, to a first approximation, is independent of pi. For the special situation of two di-allelic marker loci, we obtain a simple expression for R and its upper bound.  相似文献   

8.
In an earlier paper exact integral equations were derived for the surface potentials resulting from sources within an irregularly shaped inhomogeneous body. These exact equations cannot usually be solved. In this paper a discrete analogue is constructed which is not straightforward to solve, but which can be treated by careful mathematical methods. In particular a deflation procedure greatly facilitates the iterative solution of the problem and overcomes the divergence encountered by other authors. Numerical solutions obtained for simple geometries are compared to the exact analytic solutions available in such cases. The necessary convergence of the solutions of the discrete analog towards the solution of the continuous problem is shown to occur only if the coefficients of the discrete analogue are carefully evaluated. Calculations are then presented for realistic thoracic geometries, typical results being presented as surface potential maps. Finally the important effect of the internal regional inhomogeneities, particularly a realistic cardiac blood mass, is demonstrated by obtaining vector loops with and without these effects.  相似文献   

9.
The existing methods to solve the problems of pulsatile flow in the cardiovascular system are based on either linear axisymmetric equations or non-linear one-dimensional equations. The solutions thus obtained give only a mediocre comparison with measurements. In this paper, a non-linear axisymmetric theory is proposed. The starting point of the present theory is a third degree polynomial representation of the velocity profile. Integral methods are then applied to obtain the governing equations. To ascertain the accuracy of the theory proposed above, the calculations for a simple case involving pulsatile flow in a long rigid tube were performed. The results are: (a) the average velocities compare very well with exact solutions and (b) the velocity profiles for a given frequency agree very well with exact solutions for flow in small tubes, but tend to differ as tube size is increased.  相似文献   

10.
Inferring haplotype data from genotype data is a crucial step in linking SNPs to human diseases. Given n genotypes over m SNP sites, the haplotype inference (HI) problem deals with finding a set of haplotypes so that each given genotype can be formed by a combining a pair of haplotypes from the set. The perfect phylogeny haplotyping (PPH) problem is one of the many computational approaches to the HI problem. Though it was conjectured that the complexity of the PPH problem was O(nm), the complexity of all the solutions presented until recently was O(nm (2)). In this paper, we make complete use of the column-ordering that was presented earlier and show that there must be some interdependencies among the pairwise relationships between SNP sites in order for the given genotypes to allow a perfect phylogeny. Based on these interdependencies, we introduce the FlexTree (flexible tree) data structure that represents all the pairwise relationships in O(m) space. The FlexTree data structure provides a compact representation of all the perfect phylogenies for the given set of genotypes. We also introduce an ordering of the genotypes that allows the genotypes to be added to the FlexTree sequentially. The column ordering, the FlexTree data structure, and the row ordering we introduce make the O(nm) OPPH algorithm possible. We present some results on simulated data which demonstrate that the OPPH algorithm performs quiet impressively when compared to the previous algorithms. The OPPH algorithm is one of the first O(nm) algorithms presented for the PPH problem.  相似文献   

11.
Albers CA  Heskes T  Kappen HJ 《Genetics》2007,177(2):1101-1116
We present CVMHAPLO, a probabilistic method for haplotyping in general pedigrees with many markers. CVMHAPLO reconstructs the haplotypes by assigning in every iteration a fixed number of the ordered genotypes with the highest marginal probability, conditioned on the marker data and ordered genotypes assigned in previous iterations. CVMHAPLO makes use of the cluster variation method (CVM) to efficiently estimate the marginal probabilities. We focused on single-nucleotide polymorphism (SNP) markers in the evaluation of our approach. In simulated data sets where exact computation was feasible, we found that the accuracy of CVMHAPLO was high and similar to that of maximum-likelihood methods. In simulated data sets where exact computation of the maximum-likelihood haplotype configuration was not feasible, the accuracy of CVMHAPLO was similar to that of state of the art Markov chain Monte Carlo (MCMC) maximum-likelihood approximations when all ordered genotypes were assigned and higher when only a subset of the ordered genotypes was assigned. CVMHAPLO was faster than the MCMC approach and provided more detailed information about the uncertainty in the inferred haplotypes. We conclude that CVMHAPLO is a practical tool for the inference of haplotypes in large complex pedigrees.  相似文献   

12.
The haplotype assembly problem seeks the haplotypes of an individual from which a set of aligned SNP fragments are available. The problem is important as the haplotypes contain all the SNP information, which is essential to such studies as the analysis of the association between specific diseases and their potential genetic causes. Using Minimum Error Correction as the objective function, the problem is NP-hard, which raises the demand for effective yet affordable solutions. In this paper, we propose a new method to solve the problem by providing a novel Max-2-SAT formulation for the problem. The proposed method is compared with several well-known algorithms proposed for the problem in the literature on a recent extensive benchmark, outperforming them all by achieving solutions of higher average quality.  相似文献   

13.
The difficulty of experimental determination of haplotypes from phase-unknown genotypes has stimulated the development of nonexperimental inferral methods. One well-known approach for a group of unrelated individuals involves using the trivially deducible haplotypes (those found in individuals with zero or one heterozygous sites) and a set of rules to infer the haplotypes underlying ambiguous genotypes (those with two or more heterozygous sites). Neither the manner in which this "rule-based" approach should be implemented nor the accuracy of this approach has been adequately assessed. We implemented eight variations of this approach that differed in how a reference list of haplotypes was derived and in the rules for the analysis of ambiguous genotypes. We assessed the accuracy of these variations by comparing predicted and experimentally determined haplotypes involving nine polymorphic sites in the human apolipoprotein E (APOE) locus. The eight variations resulted in substantial differences in the average number of correctly inferred haplotype pairs. More than one set of inferred haplotype pairs was found for each of the variations we analyzed, implying that the rule-based approach is not sufficient by itself for haplotype inferral, despite its appealing simplicity. Accordingly, we explored consensus methods in which multiple inferrals for a given ambiguous genotype are combined to generate a single inferral; we show that the set of these "consensus" inferrals for all ambiguous genotypes is more accurate than the typical single set of inferrals chosen at random. We also use a consensus prediction to divide ambiguous genotypes into those whose algorithmic inferral is certain or almost certain and those whose less certain inferral makes molecular inferral preferable.  相似文献   

14.
Haplotype data are especially important in the study of complex diseases since it contains more information than genotype data. However, obtaining haplotype data is technically difficult and costly. Computational methods have proved to be an effective way of inferring haplotype data from genotype data. One of these methods, the haplotype inference by pure parsimony approach (HIPP), casts the problem as an optimization problem and as such has been proved to be NP-hard. We have designed and developed a new preprocessing procedure for this problem. Our proposed algorithm works with groups of haplotypes rather than individual haplotypes. It iterates searching and deleting haplotypes that are not helpful in order to find the optimal solution. This preprocess can be coupled with any of the current solvers for the HIPP that need to preprocess the genotype data. In order to test it, we have used two state-of-the-art solvers, RTIP and GAHAP, and simulated and real HapMap data. Due to the computational time and memory reduction caused by our preprocess, problem instances that were previously unaffordable can be now efficiently solved.  相似文献   

15.
Each person's genome contains two copies of each chromosome, one inherited from the father and the other from the mother. A person's genotype specifies the pair of bases at each site, but does not specify which base occurs on which chromosome. The sequence of each chromosome separately is called a haplotype. The determination of the haplotypes within a population is essential for understanding genetic variation and the inheritance of complex diseases. The haplotype mapping project, a successor to the human genome project, seeks to determine the common haplotypes in the human population. Since experimental determination of a person's genotype is less expensive than determining its component haplotypes, algorithms are required for computing haplotypes from genotypes. Two observations aid in this process: first, the human genome contains short blocks within which only a few different haplotypes occur; second, as suggested by Gusfield, it is reasonable to assume that the haplotypes observed within a block have evolved according to a perfect phylogeny, in which at most one mutation event has occurred at any site, and no recombination occurred at the given region. We present a simple and efficient polynomial-time algorithm for inferring haplotypes from the genotypes of a set of individuals assuming a perfect phylogeny. Using a reduction to 2-SAT we extend this algorithm to handle constraints that apply when we have genotypes from both parents and child. We also present a hardness result for the problem of removing the minimum number of individuals from a population to ensure that the genotypes of the remaining individuals are consistent with a perfect phylogeny. Our algorithms have been tested on real data and give biologically meaningful results. Our webserver (http://www.cs.columbia.edu/compbio/hap/) is publicly available for predicting haplotypes from genotype data and partitioning genotype data into blocks.  相似文献   

16.
MOTIVATION: Flux estimation using isotopomer information of metabolites is currently the most reliable method to obtain quantitative estimates of the activity of metabolic pathways. However, the development of isotopomer measurement techniques for intermediate metabolites is a demanding task. Careful planning of isotopomer measurements is thus needed to maximize the available flux information while minimizing the experimental effort. RESULTS: In this paper we study the question of finding the smallest subset of metabolites to measure that ensure the same level of isotopomer information as the measurement of every metabolite in the metabolic network. We study the computational complexity of this optimization problem in the case of the so-called positional enrichment data, give methods for obtaining exact and fast approximate solutions, and evaluate empirically the efficacy of the proposed methods by analyzing a metabolic network that models the central carbon metabolism of Saccharomyces cerevisiae.  相似文献   

17.
Coalescent likelihood is the probability of observing the given population sequences under the coalescent model. Computation of coalescent likelihood under the infinite sites model is a classic problem in coalescent theory. Existing methods are based on either importance sampling or Markov chain Monte Carlo and are inexact. In this paper, we develop a simple method that can compute the exact coalescent likelihood for many data sets of moderate size, including real biological data whose likelihood was previously thought to be difficult to compute exactly. Our method works for both panmictic and subdivided populations. Simulations demonstrate that the practical range of exact coalescent likelihood computation for panmictic populations is significantly larger than what was previously believed. We investigate the application of our method in estimating mutation rates by maximum likelihood. A main application of the exact method is comparing the accuracy of approximate methods. To demonstrate the usefulness of the exact method, we evaluate the accuracy of program Genetree in computing the likelihood for subdivided populations.  相似文献   

18.
A new method for haplotype inference including full-sib information   总被引:1,自引:0,他引:1       下载免费PDF全文
Ding XD  Simianer H  Zhang Q 《Genetics》2007,177(3):1929-1940
Recent literature has suggested that haplotype inference through close relatives, especially from nuclear families, can be an alternative strategy in determining linkage phase and estimating haplotype frequencies. In the case of no possibility to obtain genotypes for parents, and only full-sib information being used, a new approach is suggested to infer phase and to reconstruct haplotypes. We present a maximum-likelihood method via an expectation-maximization algorithm, called FSHAP, using only full-sib information when parent information is not available. FSHAP can deal with families with an arbitrary number of children, and missing parents or missing genotypes can be handled as well. In a simulation study we compare FSHAP with another existing expectation-maximization (EM)-based approach (FAMHAP), the conditioning approach implemented in FBAT and GENEHUNTER, which is only pedigree based and assumes linkage equilibrium. In most situations, FSHAP has the smallest discrepancy of haplotype frequency estimation and the lowest error rate in haplotype reconstruction, only in some cases FAMHAP yields comparable results. GENEHUNTER produces the largest discrepancy, and FBAT produces the highest error rate in offspring in most situations. Among the methods compared, FSHAP has the highest accuracy in reconstructing the diplotypes of the unavailable parents. Potential limitations of the method, e.g., in analyzing very large haplotypes, are indicated and possible solutions are discussed.  相似文献   

19.
The problem of inferring haplotypes from genotypes of single nucleotide polymorphisms (SNPs) is essential for the understanding of genetic variation within and among populations, with important applications to the genetic analysis of disease propensities and other complex traits. The problem can be formulated as a mixture model, where the mixture components correspond to the pool of haplotypes in the population. The size of this pool is unknown; indeed, knowing the size of the pool would correspond to knowing something significant about the genome and its history. Thus methods for fitting the genotype mixture must crucially address the problem of estimating a mixture with an unknown number of mixture components. In this paper we present a Bayesian approach to this problem based on a nonparametric prior known as the Dirichlet process. The model also incorporates a likelihood that captures statistical errors in the haplotype/genotype relationship trading off these errors against the size of the pool of haplotypes. We describe an algorithm based on Markov chain Monte Carlo for posterior inference in our model. The overall result is a flexible Bayesian method, referred to as DP-Haplotyper, that is reminiscent of parsimony methods in its preference for small haplotype pools. We further generalize the model to treat pedigree relationships (e.g., trios) between the population's genotypes. We apply DP-Haplotyper to the analysis of both simulated and real genotype data, and compare to extant methods.  相似文献   

20.
Development of methods for obtaining approximate analytical solutions of nonlinear differential equations and their systems is a rapidly developing field of mathematical physics. Earlier, an approximate solution of the simplest system of kinetic enzymatic equations for calculating dynamics of complementary strands of nucleic acids was obtained. In this study, we consider an alternative approach to selecting the basic linear approximation of the used method, which makes it possible to obtain more accurate analytical solutions of the set problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号