首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the complete mitochondrial genome sequences for Bursaphelenchus mucronatus, one species of pinewood nematode. The genome is a circular-DNA molecule of 14,583 bp (195 bp smaller than its congener Bursaphelenchus xylophilus) and contains 12 protein-coding genes (lacking atp8), 22 tRNA genes, and 2 rRNA genes encoded in the same direction, consistent with most other nematodes. Based on sequence comparison of mtDNA genomes, we developed a PCR-based molecular assay to differentiate B. xylophilus (highly pathogenic) and B. mucronatus (relatively less virulent) using species-specific primers. The molecular identification system employs multiplex-PCR and is very effective and reliable for discriminating these Bursaphelenchus species, which are economically important, but difficult to distinguish based on morphology. The comparison of the mitochondrial genomes and molecular identification system of the two species of Bursaphelenchus spp. should provide a rich source of genetic information to support the effective control and management (quarantine) of the pine wilt disease caused by pinewood nematodes.  相似文献   

2.
The complete mitochondrial genome (mitogenome) of a female flightless geometrid moth Apocheima cinerarius was found to be 15,722 bp in length, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a control region. The A + T content of the complete mitogenome is 80.83%. The AT skew value ([A − T] / [A + T]) is 0.027. The 13 PCGs of the mitogenome start with typical ATN codons, except for cox1 with the start codon CGA. All the tRNA genes have typical cloverleaf secondary structures, except for trnSer(AGN). The secondary structures of rrnL and rrnS were predicted. Six structural domains including conserved regions (IV, V) and variable regions (I, II, III, VI) were identified in the secondary structure of rrnL. The secondary structure of rrnS consists of 3 structural domains. The control region of A. cinerarius begins with conserved motifs of “ATAGA” + 19-bp poly T. It also contains a microsatellite-like (TA)26, a stem-and-loop structure, and a poly-A stretch. Phylogenetic analysis showed that Geometroidea is more closely related to Bombycoidea than to Noctuoidea. A. cinerarius is more closely related to Biston panterinaria than to Phthonandria atrilineata, which is in accordance with the conventional morphology-based classification.  相似文献   

3.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   

4.
In contrast to the extreme conservation of nuclear-encoded tRNAs, organization of the mitochondrial (mt) tRNA gene family in invertebrates is highly dynamic and rapidly evolving. While gene duplication and loss, gene isomerism, recruitment, and rearrangements have occurred sporadically in several invertebrate lineages, little is known regarding the pattern of their evolution. Comparisons of invertebrate mt genomes at a generic level can be extremely helpful in investigating evolutionary patterns of variation, as intermediate stages of the process may be identified. Variation of mitochondrial tRNA organization among Meretrix clams provides good materials to investigate mt tRNA evolution. We characterized the complete mt genome of the lyrate Asiatic hard clam Meretrix lyrata, re-annotated tRNAs of four previously sequenced Meretrix clams, and undertook an intensive comparison of tRNA gene families in these clams. Our results 1) provide evidence that the commonly observed duplication of trnM may have occurred independently in different bivalve lineages and, based on the higher degree of trnM gene similarity, may have occurred more recently than expected; 2) suggest that “horizontal” evolution may have played an important role in tRNA gene family evolution based on frequent gene duplications and gene recruitment events; and 3) reveal the first case of isoacceptor “vertical” tRNA gene recruitment (VTGR) and present the first clear evidence that VTGR allows rapid evolution of tRNAs. We identify the trnS− UCR gene in Meretrix clams, previously considered missing in this lineage, and speculate that trnS− UCR lacking the D-arm in both M. lyrata and Meretrix lamarckii may represent the ancestral status. Phylogenetic analysis based on 13 concatenate protein-coding genes provided opportunities to detect rapidly evolved tRNA genes via VTGR and gene isomerism processes. This study suggests that evolution of the mt tRNA gene family in bivalves is more complex than previously thought and that comparison of several congeneric species is a useful strategy in investigating evolutionary patterns and dynamics of mt tRNA genes.  相似文献   

5.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

6.
Liu QN  Zhu BJ  Dai LS  Wei GQ  Liu CL 《Gene》2012,505(2):291-299
The complete mitochondrial genome (mitogenome) of Actias selene (Lepidoptera: Saturniidae) was determined to be 15,236 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. The AT skew of the mitogenome of A. selene was slightly negative, indicating a higher number of T compared to A nucleotides. The nucleotide composition of the mitogenome of A. selene was also biased toward A+T nucleotides (78.91%). All PCGs were initiated by ATN codons, except for the gene encoding cytochrome c oxidase subunit 1 (cox1), which may be initiated by the TTAG, as observed in other lepidopterans. Three genes, including cox1, cox2, and nad5, had incomplete stop codons consisting of just a T. With an exception for trnS1(AGN), all the other tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A+T-rich region of the mitogenome of A. selene was 339 bp in length, and contains several features common to the Lepidopteras, including non-repetitive sequences, a conserved structure combining the motif ATAGA and an 18-bp poly-T stretch and a poly-A element upstream of trnM gene. Phylogenetic analysis showed that A. selene was close to Saturniidae.  相似文献   

7.
X Wu  X Li  L Li  X Xu  J Xia  Z Yu 《Gene》2012,507(2):112-118
A feasible way to perform evolutionary analyses is to compare characters divergent enough to observe significant differences, but sufficiently similar to exclude saturation of the differences that occurred. Thus, comparisons of invertebrate mitochondrial (mt) genomes at low taxonomic levels can be extremely helpful in investigating patterns of variation and evolutionary dynamics of genomes, as intermediate stages of the process may be identified. Fortunately, in this study, we newly sequenced the mt genome of the eighth member of Asian Crassostrea oysters which can provide necessary intermediate characters for us to believe that the variation of Crassostrea mt genomes is considerably greater than previously acknowledged. Several new features of Asian Crassostrea oyster mitochondrial genomes were revealed, and our results are particularly significant as they 1) suggest a novel model of alloacceptor tRNA gene recruitment, namely "vertical" tRNA gene recruitment, which can be successfully used to explain the origination of the unusually additional trnK and trnQ genes (annotated as trnK(2) and trnQ(2) respectively) in the mt genomes of the five Asian oysters, and we speculate that this recruitment progress may be a common phenomenon in the evolution of the tRNA multigene family; 2) reveal the existence of two additional, lineage-specific, mtDNA-encoded genes that may originate from duplication of nad2 followed by rapid evolutionary change. Each of these two genes encodes a unique amino terminal signal peptide, thus each might possess an unknown function; and 3) identify for the first time the atp8 gene in oysters. The present study thus gives further credence to the comparison of congeneric bivalves as a meaningful strategy to investigate mt genomic evolutionary trends in genome organization, tRNA multigene family, and gene loss and/or duplication that are difficult to undertake at higher taxonomic levels. In particular, our study provides new evidence for the identification and characterization of ORFs in the "non-coding region" of animal mt genomes.  相似文献   

8.
Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of + 1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the “out-of-frame pairing” model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA – possibly a result of their low growth rates and deep-water lifestyle – has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.  相似文献   

9.
Yu DJ  Xu L  Nardi F  Li JG  Zhang RJ 《Gene》2007,396(1):66-74
The complete mitochondrial genome of the oriental fruit fly Bactrocera dorsalis s.s. has been sequenced, and is here described and compared with the homologous sequences of Bactrocera oleae and Ceratitis capitata. The genome is a circular molecule of 15,915 bp, and encodes the set of 37 genes generally found in animal mitochondrial genomes. The structure and organization of the molecule is typical and similar to the two closely related species B. oleae and C. capitata, although it presents an interesting case of putative intra-molecular recombination. The relevance of the growing comparative dataset of tephritid complete mitochondrial genomes is discussed in relation to the possibility to develop robust assays for species discrimination in quarantine and agricultural monitoring practices, as well as basic phylogeography/population genetic studies.  相似文献   

10.
The mitogenome of Chilo auricilius (Lepidoptera: Pyraloidea: Crambidae) was a circular molecule made up of 15,367 bp. Sesamia inferens, Chilo suppressalis, Tryporyza incertulas, and C. auricilius, are closely related, well known rice stem borers that are widely distributed in the main rice-growing regions of China. The gene order and orientation of all four stem borers were similar to that of other insect mitogenomes. Among the four stem borers, all AT contents were below 83%, while all AT contents of tRNA genes were above 80%. The genomes were compact, with only 121–257 bp of non-coding intergenic spacer. There are 56 or 62-bp overlapping nucleotides in Crambidae moths, but were only 25-bp overlapping nucleotides in the noctuid moth S. inferens. There was a conserved motif ‘ATACTAAA’ between trnS2 (UCN) and nad1 in Crambidae moths, but this same region was ‘ATCATA’ in the noctuid S. inferens. And there was a 6-bp motif ‘ATGATAA’ of overlapping nucleotides, which was conserved in Lepidoptera, and a 14-bp motif ‘TAAGCTATTTAAAT’ conserved in the three Crambidae moths (C. suppressalis, C. auricilius and T. incertulas), but not in the noctuid. Finally, there were no stem-and-loop structures in the two Chilo moths.  相似文献   

11.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   

12.
The complete 15,223-bp mitochondrial genome (mitogenome) of Tryporyza incertulas (Walker) (Lepidoptera: Pyraloidea: Crambidae) was determined, characterized and compared with seven other species of superfamily Pyraloidea. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. Compared with other moths of Pyraloidea, the A + T biased (77.0%) of T. incertulas was the lowest. Eleven protein-coding genes (PCGs) utilized the standard ATN, but cox1 used CGA and nad4 used AAT as the initiation codons. Ten protein-coding genes had the common stop codon TAA, except nad3 having TAG as the stop codon, and cox2, nad4 using T, TA as the incomplete stop codons, respectively. All of the tRNA genes had typical cloverleaf secondary structures except trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. There was a spacer between trnQ and nad2, which was common in Lepidoptera moths. A 6-bp motif ‘ATACTA’ between trnS2(UCN) and nad1, a 7-bp motif “AGC(T)CTTA” between trnW and trnC and a 6-bp motif “ATGATA” of overlapping region between atp8 and atp6 were found in Pyraloidea moths. The A + T-rich region contained an ‘ATAGT(A)’-like motif followed by a poly-T stretch. In addition, two potential stem-loop structures, a duplicated 19-bp repeat element, and two microsatellites ‘(TA)12’ and ‘(TA)9’ were observed in the A + T-rich region of T. incertulas mitogenome. Finally, the phylogenetic relationships of Pyraloidea species were constructed based on amino acid sequences of 13 PCGs of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. These molecular-based phylogenies supported the morphological classification on relationships within Pyraloidea species.  相似文献   

13.
In DNA barcoding, a short standardized DNA sequence is used to assign unknown individuals to species and aid in the discovery of new species. A fragment of the mitochondrial gene cytochrome c oxidase subunit 1 is emerging as the standard barcode region for animals. However, patterns of mitochondrial variability can be confounded by the spread of maternally transmitted bacteria that cosegregate with mitochondria. Here, we investigated the performance of barcoding in a sample comprising 12 species of the blow fly genus Protocalliphora, known to be infected with the endosymbiotic bacteria Wolbachia. We found that the barcoding approach showed very limited success: assignment of unknown individuals to species is impossible for 60% of the species, while using the technique to identify new species would underestimate the species number in the genus by 75%. This very low success of the barcoding approach is due to the non-monophyly of many of the species at the mitochondrial level. We even observed individuals from four different species with identical barcodes, which is, to our knowledge, the most extensive case of mtDNA haplotype sharing yet described. The pattern of Wolbachia infection strongly suggests that the lack of within-species monophyly results from introgressive hybridization associated with Wolbachia infection. Given that Wolbachia is known to infect between 15 and 75% of insect species, we conclude that identification at the species level based on mitochondrial sequence might not be possible for many insects. However, given that Wolbachia-associated mtDNA introgression is probably limited to very closely related species, identification at the genus level should remain possible.  相似文献   

14.
Liriomyza trifolii (Burgess), Liriomyza huidobrensis (Blanchard), and Liriomyza bryoniae (Kaltenbach), are three closely related and economically important leafminer pests in the world. This study examined the complete mitochondrial genomes of L. trifolii, L. huidobrensis and L. bryoniae, which were 16141 bp, 16236 bp and 16183 bp in length, respectively. All of them displayed 37 typical animal mitochondrial genes and an A + T-rich region. The genomes were highly compact with only 60–68 bp of non-coding intergenic spacer. However, considerable differences in the A + T-rich region were detected among the three species. Results of this study also showed the two ribosomal RNA genes of the three species had very limited variable sites and thus should not provide much information in the study of population genetics of these species. Data generated from three leafminers' complete mitochondrial genomes should provide valuable information in studying phylogeny of Diptera, and developing genetic markers for species identification in leafminers.  相似文献   

15.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

16.
Myiasis is a relatively common infection of animals kept as pets, although only 1 case of canine myiasis has been described so far in the Republic of Korea. In the present study, we report an additional case of canine wound myiasis with identification of its causative agent, Lucilia sericata. An 8-year-old male Siberian husky dog was referred with anorexia, vomiting, and diarrhea to the Chungbuk National University Veterinary Medical Center, Cheongju-si (city), Chungcheongbuk-do (province), Korea in July 2013. Physical examination indicated the patient had a deep wound filled with a maggot swarm as a left gluteal lesion. A total of 216 maggots were removed by forceps, and the wounded area was sponged with gauzes and disinfected with 70% alcohol and a povidone-iodine solution. After daily care and suturing the wound, the patient was discharged at day 19 after admission. Recovered worms possessed morphological characteristics similar to those of L. sericata, namely, a sub-cylindrical body with 6–8 lobed anterior spiracles, round shaped with a button surrounded by a peritremal ring with no gaps, and similar distances between dorsal, median, and outer papillae of the 12th segment. Additionally, cox1 partial sequences (528 bp) obtained in the present study showed 100% identity with those of L. sericata (GenBank no. KT272854.1). L. sericata is indicated as a pathogen of myiasis infection not only in humans, but also in animals kept as pets in Korea.  相似文献   

17.
The complete mitochondrial genome (mitogenome) of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae) was determined. The circular genome is 15,345 bp long, and presents a typical gene organization and order for sequenced mitogenomes of Bombycidea species. The nucleotide composition of the genome is highly A+T biased, accounting for 79.86%. The AT skew of the genome is slightly negative, indicating the occurrence of more Ts than As, as found in other Saturniidae species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI and COII, which are tentatively designated by CGA and GTG, respectively, as observed in other insects. Four of 13 PCGs, including COI, COII, ATP6, and ND3, harbor the incomplete termination codons, T or TA. With an exception for tRNASer(AGN), all other tRNAs can form a typical clover-leaf structure of mitochondrial tRNA. The 359 bp A+T-rich region of S. c. cynthia contains non-repetitive sequences, but harbors several features common to the Bombycidea insects, including the motif ATAGA followed by a poly-T stretch of 19 bp, a microsatellite-like (AT)7 element preceded by the ATTTA motif, and a poly-A element upstream tRNAMet. The phylogenetic analyses support the morphology-based current hypothesis that Bombycidae and Saturniidae are monophyletic. Our result confirms that Saturniini and Attacini form a reciprocal monophyletic group within Saturniidae.  相似文献   

18.
This is the first documentation of the complete mitochondrial genome sequence of the Malaysian Mahseer, Tor tambroides. The 16,690 bp mitogenome with GenBank accession number JX444718 contains 13 protein genes, 22 tRNAs, two rRNAs, and a noncoding control region (D-loop) as is typical of most vertebrates. The phylogenomic reconstruction of this newly generated data with 21 Cypriniformes GenBank accession ID concurs with the recognized status of T. tambroides within the subfamily Cyprininae. This is in agreement with previous hypotheses based on morphological and partial mitochondrial analyses.  相似文献   

19.
Bunostomum trigonocephalum and Bunostomum phlebotomum are blood-feeding hookworms of sheep and cattle, causing considerable economic losses to the live stock industries. Studying genetic variability within and among hookworm populations is critical to addressing epidemiological and ecological questions. Mitochondrial (mt) DNA is known to provide useful markers for investigations of population genetics of hookworms, but mt genome sequence data are scant. In the present study, the complete mitochondrial DNA (mtDNA) sequences of the sheep and goat hookworm B. trigonocephalum were determined for the first time, and the mt genome of B. phlebotomum from yak in China was also sequenced for comparative analyses of their gene contents and genome organizations. The lengths of mt DNA sequences of B. trigonocephalum sheep isolate, B.trigonocephalum goat isolate and B. phlebotomum China yak isolate were 13,764 bp, 13,771 bp and 13,803 bp in size, respectively. The identity of the mt genomes was 99.7% between B. trigonocephalum sheep isolate and B. trigonocephalum goat isolate. The identity of B. phlebotomum China yak isolate mt genomes was 85.3% with B. trigonocephalum sheep isolate, and 85.2% with B. trigonocephalum goat isolate. All the mt genes of the two hookworms were transcribed in the same direction and gene arrangements were consistent with those of the GA3 type, including 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes, but lacking ATP synthetase subunit 8 gene. The mt genomes of B. trigonocephalum and B. phlebotomum were similar to prefer bases A and T, the contents of A + T are 76.5% (sheep isolate), 76.4% (goat isolate) and 76.9% (China yak isolate), respectively. Phylogenetic relationships reconstructed using concatenated amino acid sequences of 12 protein-coding genes with three methods (maximum likelihood, Bayesian inference and neighbor joining) revealed that the B. trigonocephalum and B. phlebotomum represent distinct but closely-related species. These data provide novel and useful genetic markers for studying the systematics, and population genetics of the two ruminant hookworms.  相似文献   

20.
Mitochondrial genome (mitogenome) can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. In this study, we present the complete mitogenome of the atlas moth, Attacus atlas (Lepidoptera: Saturniidae), a well-known silk-producing and ornamental insect with the largest wing surface area of all moths. The mitogenome of A. atlas is a circular molecule of 15,282 bp long, and its nucleotide composition shows heavily biased towards As and Ts, accounting for 79.30%. This genome comprises 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. It is of note that this genome exhibits a slightly positive AT skew, which is different from the other known Saturniidae species. All PCGs are initiated by ATN codons, except for COI with CGA instead. Only six PCGs use a common stop codon of TAA or TAG, whereas the remaining seven use an incomplete termination codon T or TA. All tRNAs have the typical clover-leaf structure, with an exception for tRNASer(AGN). The A. atlas A + T-rich region contains non-repetitive sequences, but harbors several features common to the Bombycoidea insects. The phylogenetic relationships based on Maximum Likelihood method provide a well-supported outline of Saturniidae, which is in accordance with the traditional morphological classification and recent molecular works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号