首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine 165, which is located near the active site metal, is mostly conserved in aligned amino acid sequences of manganese-containing superoxide dismutase (Mn-SOD) proteins, but is substituted to threonine in most iron-containing SODs (Fe-SODs). Because threonine 165 is located between Trp128 and Trp130, and Trp128 is one of the metal-surrounding aromatic amino acids, the conversion of this amino acid may affect the metal-specific activity of Escherichia coli Mn-SOD. In order to clarify this possibility, we prepared a mutant of E. coli Mn-SOD with the replacement of Gly165 by Thr. The ratio of the specific activities of Mn- to Fe-reconstituted enzyme increased from 0.006 in the wild-type to 0.044 in the mutant SOD; therefore, the metal-specific SOD was converted to a metal-tolerant SOD. The visible absorption spectra of the Fe- and Mn-reconstituted mutant SODs indicated the loss of Mn-SOD character. It was concluded that Gly at position 165 plays a catalytic role in maintaining the integrity of the metal specificity of Mn-SOD.  相似文献   

2.
Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from − 30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of − 3 °C cold stress and thawing for 1 h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance.  相似文献   

3.
The invention of DNA cloning over 40 years ago marked the advent of molecular biology. The technique has now become a routine practice in any modern biomedical laboratory. Although positive-selection of recombinants in DNA cloning seems to be superior to blue/white selection based on the disruption of the lacZ gene, it is rarely practiced due to its high background, lack of multiple cloning sites, and inability to express the genes of interest or purify the protein products. Here we report the creation of a new positive-selection cloning vector dubbed pKILLIN, which overcomes all of the above pitfalls. The essence behind its high cloning efficiency is the extreme toxicity and small size of the toxic domain of killin, a recently discovered p53 target gene. Insertion inactivation of killin within the multiple cloning site via either blunt- or sticky-end ligation not only serves as a highly efficient cloning trap, but also may allow any cloned genes to be expressed as His-tagged fusion proteins for subsequent purification. Thus, pKILLIN is a versatile positive-selection vector ideal for cloning PCR products, making DNA libraries, as well as routine cloning and bacterial expression of genes.  相似文献   

4.
Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98 Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants.  相似文献   

5.
6.
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (ΔKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the ΔKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-ΔKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Δpnp mutation at 18 °C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.  相似文献   

7.
Reactive oxygen species play a dual role in host-pathogen interaction. They impede the spread of biotrophic pathogens via stimulating cell death and hypersensitive response (HR), and, on the other hand, they provide access to nutrients for necrotrophic pathogens feeding on dead tissues and facilitate their colonizing the host. The participation of ROS in defending plants from pathogens with a combined lifestyle (hemibiotrophs) is not yet understood, and it varies in its dependence on the particular host-pathogen combination. In the present study, we inoculated rapeseed plants (Brassica napus) with a hemibiotrophic fungus, Leptosphaeria maculans, and manipulated the H2O2 content in cotyledons by infiltrating catalase and/or H2O2 into tissues. The action of catalase resulted in a significant decrease in lesions development, but when H2O2 was applied instead, lesion formation was only moderately stimulated compared to the untreated control. When H2O2 toxicity to L. maculans was tested in vitro, concentrations above 5 mM and 10 mM H2O2 were lethal for germinating conidia and growing mycelia of L. maculans, respectively. We can assume that L. maculans behaves as a necrotroph during this early stage of infection even though its resistance to H2O2 does not exceed standard concentrations. To investigate antioxidant mechanisms implicated in the response of B. napus to L. maculans, the cotyledons were both inoculated with conidia and treated with L. maculans elicitor. Increased activities of guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and superoxide dismutase were recorded both in L. maculans-infected and elicitor-treated cotyledons. The results indicate the importance of these enzymes for ROS scavenging in B. napus-L. maculans interaction.  相似文献   

8.
Juha Okkeri  Tuomas Haltia 《BBA》2006,1757(11):1485-1495
ZntA is a P-type ATPase which transports Zn2+, Pb2+ and Cd2+ out of the cell. Two cysteine-containing motifs, CAAC near the N-terminus and CPC in transmembrane helix 6, are involved in binding of the translocated metal. We have studied these motifs by mutating the cysteines to serines. The roles of two other possible metal-binding residues, K693 and D714, in transmembrane helices 7 and 8, were also addressed. The mutation CAAC → SAAS reduces the ATPase activity by 50%. The SAAS mutant is phosphorylated with ATP almost as efficiently as the wild type. However, its phosphorylation with Pi is poorer than that of the wild type and its dephosphorylation rate is faster than that of the wild type ATPase. The CPC → SPS mutant is inactive but residual phosphorylation with ATP could still be observed. The most important findings of this work deal with the prospective metal-binding residues K693 and D714: the substitution K693N eliminates the Zn2+-stimulated ATPase activity completely, although significant Zn2+-dependent phosphorylation by ATP remains. The K693N ATPase is hyperphosphorylated by Pi. ZntA carrying the change D714M has strong metal-independent ATPase activity and is very weakly phosphorylated both by ATP and Pi. In conclusion, K693 and D714 are functionally essential and appear to contribute to the metal specificity of ZntA, most probably by being parts of the metal-binding site made up by the CPC motif.  相似文献   

9.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned cDNA encoding SOD activated with copper/zinc (CuZn SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of CuZn SOD was 692 bp and had a 465 bp open reading frame encoding 154 amino acids. The deduced amino acid sequence of B. calyciflorus CuZn SOD showed 63.87%, 60.00%, 59.74% and 48.89% similarity with the CuZn SOD of the Ctenopharyn godonidella, Schistosoma japonicum, Drosophila melanogaster and Caenorhabditis elegans, respectively. The phylogenetic tree constructed based on the amino acid sequences of CuZn SODs from B. calyciflorus and other organisms revealed that rotifer is closely related to nematode. Analysis of the expression of CuZn SOD under different temperatures (15, 30 and 37 °C) revealed that its expression was enhanced 4.2-fold (p < 0.001) at 30 °C after 2 h, however, the lower temperature (15 °C) promoted CuZn SOD transiently (4.1-fold, p < 0.001) and then the expression of CuZn SOD decreased to normal level (p > 0.05). When exposed to H2O2 (0.1 mM), CuZn SOD, manganese superoxide dismutase (Mn SOD) and catalase (CAT) gene were upregulated, and in addition, the mRNA expression of CuZn SOD gene was induced instantaneously after exposure to vitamin E. It indicates that the CuZn SOD gene would be an important gene in response to oxidative and temperature stress.  相似文献   

10.
11.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   

12.
The nanos gene family was essential for germ line development in diverse organisms. In the present study, the full-length cDNA of a nanos1 homologue in A. sinensis, Asnanos1, was isolated and characterized. The cDNA sequence of Asnanos1 was 1489 base pairs (bp) in length and encoded a peptide of 228 amino acid residues. Multiple sequence alignment showed that the zinc-finger motifs of Nanos1 were highly conserved in vertebrates. By RT-PCR analysis, Asnanos1 mRNAs were ubiquitously detected in all tissues examined except for the fat, including liver, spleen, heart, ovary, kidney, muscle, intestines, pituitary, hypothalamus, telencephalon, midbrain, cerebellum, and medulla oblongata. Moreover, a specific polyclonal antibody was prepared from the in vitro expressed partial AsNanos1 protein. Western blot analysis revealed that the tissue expression pattern of AsNanos1 was not completely coincided with that of its mRNAs, which was not found in fat, muscle and intestines. Additionally, by immunofluoresence localization, it was observed that AsNanos1 protein was in the cytoplasm of primary oocytes and spermatocytes. The presented results indicated that the expression pattern of Asnanos1 was differential conservation and divergence among diverse species.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.  相似文献   

14.
Shovanlal Gayen 《FEBS letters》2010,584(4):713-718
The C-terminal residues 98-104 are important for structure stability of subunit H of A1AO ATP synthases as well as its interaction with subunit A. Here we determined the structure of the segment H85-104 of H from Methanocaldococcus jannaschii, showing a helix between residues Lys90 to Glu100 and flexible tails at both ends. The helix-helix arrangement in the C-terminus was investigated by exchange of hydrophobic residues to single cysteine in mutants of the entire subunit H (HI93C, HL96C and HL98C). Together with the surface charge distribution of H85-104, these results shine light into the A-H assembly of this enzyme.  相似文献   

15.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   

16.
17.
Translesion DNA polymerases are more efficient at bypass of many DNA adducts than replicative polymerases. Previous work with the translesion polymerase Sulfolobus solfataricus Dpo4 showed a decrease in catalytic efficiency during bypass of bulky N2-alkyl guanine (G) adducts with N2-isobutylG showing the largest effect, decreasing ∼ 120-fold relative to unmodified deoxyguanosine (Zhang, H., Eoff, R. L., Egli, M., Guengerich, F. P. Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translation synthesis past bulky N2-alkylguanine adducts. J. Biol. Chem. 2009; 284: 3563-3576). The effect of adduct size on individual catalytic steps has not been easy to decipher because of the difficulty of distinguishing early noncovalent steps from phosphodiester bond formation. We developed a mutant with a single Trp (T239W) to monitor fluorescence changes associated with a conformational change that occurs after binding a correct 2′-deoxyribonucleoside triphosphate (Beckman, J. W., Wang, Q., Guengerich, F. P. Kinetic analysis of nucleotide insertion by a Y-family DNA polymerase reveals conformational change both prior to and following phosphodiester bond formation as detected by tryptophan fluorescence. J. Biol. Chem. 2008; 283: 36711-36723) and, in the present work, utilized this approach to monitor insertion opposite N2-alkylG-modified oligonucleotides. We estimated maximal rates for the forward conformational step, which coupled with measured rates of product formation yielded rate constants for the conformational step (both directions) during insertion opposite several N2-alkylG adducts. With the smaller N2-alkylG adducts, the conformational rate constants were not changed dramatically (<  3-fold), indicating that the more sensitive steps are phosphodiester bond formation and partitioning into inactive complexes. With the larger adducts (≥  (2-naphthyl)methyl), the absence of fluorescence changes suggests impaired ability to undergo an appropriate conformational change, consistent with previous structural work.  相似文献   

18.

Background

1-Aminocyclopropane-1-carboxylate oxidase (ACO) is a key enzyme that catalyses the final step in the biosynthesis of the plant hormone ethylene. Recently, the first ACO homologue gene was isolated in Agaricus bisporus, whereas information concerning the nature of the ethylene-forming activity of this mushroom ACO is currently lacking.

Methods

Recombinant ACO from A. bisporus (Ab-ACO) was purified and characterised for the first time. Molecular modelling combined with site-directed mutagenesis and kinetic and spectral analysis were used to investigate the property of Ab-ACO.

Results

Ab-ACO has eight amino acid residues that are conserved in the Fe (II) ascorbate family of dioxygenases, including four catalytic residues in the active site, but Ab-ACO lacks a key residue, S289. In comparison to plant ACOs, Ab-ACO requires ACC and Fe (II) but does not require ascorbate. In addition, Ab-ACO had relatively low activity and was completely dependent on bicarbonate, which could be ascribed to the replacement of S289 by G289. Moreover, the ferrous ion could induce a change in the tertiary, but not the secondary, structure of Ab-ACO.

Conclusions

These results provide crucial experimental support for the ability of Ab-ACO to catalyse ethylene formation in a similar manner to that of plant ACOs, but there are differences between the biochemical and catalytic characteristics of Ab-ACO and plant ACOs.

General significance

This work enhances the understanding of the ethylene biosynthesis pathways in fungi and could promote profound physiological research of the role of ethylene in the regulation of mushroom growth and development.  相似文献   

19.
The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.  相似文献   

20.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号