首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773) and Pachysolen tannophilus NRRL Y-2460, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. When yeast were grown on glucose and resuspended in mixed sugars, the length of this lag was observed to be a function of the glucose concentration consumed (and consequently, the ethanol concentration accumulated) prior to the switch from glucose to xylose fermentation. At glucose concentrations of 95 g/L, the switch to xylose utilization was severely stalled such that efficient xylose fermentation could not occur. Further investigation focused on the impact of ethanol on cellular xylose transport and the induction and maintenance of xylose reductase and xylitol dehydrogenase activities when large cell populations of S. stipitis NRRL Y-7124 were pre-grown on glucose or xylose and then presented mixtures of glucose and xylose for fermentation. Ethanol concentrations around 50 g/L fully repressed enzyme induction although xylose transport into the cells was observed to be occurring. Increasing degrees of repression were documented between 15 and 45 g/L ethanol. Repitched cell populations grown on xylose resulted in faster fermentation rates, particularly on xylose but also on glucose, and eliminated diauxic lag and stalling during mixed sugar conversion by P. tannophilus or S. stipitis, despite ethanol accumulations in the 60 or 70 g/L range, respectively. The process strategy of priming cells on xylose was key to the successful utilization of high mixed sugar concentrations because specific enzymes for xylose utilization could be induced before ethanol concentration accumulated to an inhibitory level.  相似文献   

2.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

3.
Summary Pichia stipitis NRRL Y-7124 yeast cells were for the first time immobilized both in agar gel beads and on fine nylon net for ethanol fermentation on D-xylose, in order to investigate the possibility of using the biocatalyst for improved utilization of the biomass pentose fraction. With free cells the initial xylose level affected little ethanol production, with a maximum of 22 g/l ethanol obtained in 5 days on 5% and of 40 g/l in 8 days on 10% xylose, and an average volumetric productivity of about 0.22 g/lh. The maximum ethanol concentration of 19.5% on 5% xylose with the nylon net attached cells in a continuous packed-bed column reactor was obtained with 35 h residence time. The volumetric productivities of 0.56 g/lh at 19.5 g/l ethanol and 1.0 g/lh at 15.0 g/l ethanol were markedly higher than those obtained with free cells. The stability of the immobilized biocatalyst was excellent. The same reactor could be used for at least 80 days without significant activity loss.  相似文献   

4.
Candida boidinii NRRL Y-17213 produced more xylitol thanC. magnolia (NRRL Y-4226 and NRRL Y-7621),Debaryomyces hansenii (C-98 M-21, C-56 M-9 and NRRL Y-7425), orPichia (Hansenula) anomala (NRRL Y-366). WithC. boidinii, highest xylitol productivity was at pH 7 but highest yield was at pH 8, using 5 g urea and 5 g Casamino acids/I. Decreasing the aeration rate decreased xylose consumption and cell growth but increased the xylitol yield. When an initial cell density of 5.1 g/l was used instead of 1.3 g/l, xylitol yield and the specific xylitol production rate doubled. Substrate concentration had the greatest effect on xylitol production; increasing xylose concentration 7.5-fold (to 150 g/l) gave a 71-fold increase in xylitol production (53 g/l) and a 10-fold increase in xylitol/ethanol ratio. The highest xylitol yield (0.47 g/g), corresponding to 52% of the theoretical yield, was obtained with 150 g xylose/l after 14 days. Xylose at 200 g/l inhibited xylitol production.E. Vandeska and S. Kuzmanova were and S. Amartey and T. Jeffries are with the Forest Products Laboratory, Institute for Microbial and Biochemical Technology, 1 Gifford Pinchot Drive, Madison, WI 53703, USA. E. Vandeska and S. Kuzmanova are now with the Faculty of Technology and Metallurgy, Rudjer Boskovic 16, 91000 Skopje, Macedonia  相似文献   

5.
Saccharomyces cerevisiae NRRL Y-2034, S, uvarum NRRL Y-1347, and Zymomonas mobilis NRRL B-806 each were separately immobilized in a Ca-alginate matrix and incubated in the presence of a free-flowing and continuous 1, 3, 5, 10, or 20% (w/w) glucose solution. In general, the yeast cells, converted 100percnt; of the 1, 3, and 5% glucose to alcohol within 48 h and maintained such a conversion rate for at least two weeks. The bacterium converted ca. 90% (w/w) of the 1, 3, and 5% glucose to alcohol continuously for one week. However, both the yeast and bacterium were inhibited in the highest glucose (20% w/w) solution. All of the immobilized cultures produced some alcohol for at least 14 days. Immobilized S. cerevisiae was the best alcohol producer of all of the glucose concentrations; the yeast yielded 4.7 g ethanol/100 g solution within 72 h in the 10% glucose solution. After 7-8 days in the 10% solution, S. cerevisiae produced ethanol at 100% of theoretical yield (5.0 g ethanol/100 g solution), with a gradual decrease in alcohol production by 14 days. Immobillized S. uvarum produced a maximum of 4.0 g ethanol/100 g solution within 2 days and then declined to ca. 1.0 g ethanol/100 g solution after 7 days continuous fermentation in the 10% glucose solution. Zymomonas mobilis reached its maximum ethanol production at 4 days (4.7 g/100 g solution), and then diminished similarly to S. uvarum. The development of a multiple disk shaft eliminated the problem both of uneven distribution of alginate-encapsulated cells and of glucose channeling within the continuous-flow fermentor column. This invention improved alcohol production about threefold for the yeast cells.  相似文献   

6.
Acetone, butanol, and ethanol (ABE) were produced from corn fiber arabinoxylan (CFAX) and CFAX sugars (glucose, xylose, galactose, and arabinose) using Clostridium acetobutylicum P260. In mixed sugar (glucose, xylose, galactose, and arabinose) fermentation, the culture preferred glucose and arabinose over galactose and xylose. Under the experimental conditions, CFAX (60 g/L) was not fermented until either 5 g/L xylose or glucose plus xylanase enzyme were added to support initial growth and fermentation. In this system, C. acetobutylicum produced 9.60 g/L ABE from CFAX and xylose. This experiment resulted in a yield and productivity of 0.41 and 0.20 g/L x h, respectively. In the integrated hydrolysis, fermentation, and recovery process, 60 g/L CFAX and 5 g/L xylose produced 24.67 g/L ABE and resulted in a higher yield (0.44) and a higher productivity (0.47 g/L x h). CFAX was hydrolyzed by xylan-hydrolyzing enzymes, and ABE were recovered by gas stripping. This investigation demonstrated that integration of hydrolysis of CFAX, fermentation to ABE, and recovery of ABE in a single system is an economically attractive process. It is suggested that the culture be further developed to hydrolyze CFAX and utilize all xylan sugars simultaneously. This would further increase productivity of the reactor.  相似文献   

7.
Pichia stipitis NRRL Y-7124 is a xylose-fermenting yeast able to accumulate ca. 57 g/L ethanol. Because optimum process conditions are important, data were collected to determine the effects of temperature and pH on growth and fermentation rates and product accumulations. Temperatures (26-35 degrees C) providing optimum biomass and ethanol productivities did not necessarily provide maximum ethanol accumulation. Xylitol and residual xylose concentrations increased with temperature. Maximum ethanol selectivity was achieved at 25-26 degrees C with minimal sacrifice to production rates. The temperature optimum for xylose could not be generalized to glucose fermentations, in which ethanol productivity and accumulation were optimum at 34 degrees C. The optimum pH range for growth and fermentation on xylose was 4-7 at 25 degrees C.  相似文献   

8.
Summary Three strains ofPichia stipitis and three ofCandida shehatae were compared withPachysolen tannophilus in their abilities to ferment xylose at concentrations as high as 200 g/L when subjected to both aerobic and microaerophilic conditions. Evaluations based on accumulated ethanol concentrations, ethanol productivities, xylose consumption, and ethanol and xylitol yields were determined from batch culture time courses. Of the strains considered,P.stipitis NRRL Y-7124 seemed most promising since it was able to utilize all but 7 g/L of 150 g/L xylose supplied aerobically to produce 52 g/L ethanol at a yield of 0.39 g per gram xylose (76% of theoretical yield) and at a rate comparable to the fastest shown byC.shehatae NRRL Y-12878. For all strains tested, fermentation results from aerobic cultures were more favorable than those from microaerophilic cultures.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

9.
Ethanol production was evaluated from eucalyptus wood hemicellulose acid hydrolysate using Pichia stipitis NRRL Y-7124. An initial lag phase characterized by flocculation and viability loss of the yeast inoculated was observed. Subsequently, cell regrowth occurred with sequential consumption of sugars and production of ethanol. Polyol formation was detected. Acetic acid present in the hydrolysate was an important inhibitor of the fermentation, reducing the rate and the yield. Its toxic effect was due essentially to its undissociated form. The fermentation was more effective at an oxygen transfer rate between 1.2 and 2.4 mmol/L h and an initial pH of 6.5. The hydrolysate used in the experiences had the following composition (expressed in grams per liter): xylose 30, arabinose 2.8, glucose 1.5, galactose 3.7, mannose 1.0, cellobiose 0.5, acetic acid 10, glucuronic acid 1.5, and galacturonic acid 1.0. The best values obtained were maximum ethanol concentration 12.6 g/L, fermentation time 75 h, fermentable sugar consumption 99% ethanol yield 0.35 g/g sugars consumed, and volumetric ethanol productivity 4 g/L day. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
以树干毕赤酵母和酿酒酵母为发酵菌株,酸性蒸汽爆破玉米秸秆预水解液和纯糖模拟液为C源,采用固定化酵母细胞的方法,研究了酸爆玉米秸秆预水解液初始pH、N源种类及其浓度、3种发酵模式对树干毕赤酵母戊糖发酵的影响。结果表明:玉米秸秆预水解液适合发酵的初始pH范围为6.0~7.0;1.0 g/L的(NH4)2SO4作为N源,在40 g/L葡萄糖和25 g/L木糖培养基中发酵24 h,糖利用率达到99.47%,乙醇质量浓度为24.72 g/L,优于尿素和蛋白胨作为N源;3种模式的发酵体系中,以游离树干毕赤酵母和固定化酿酒酵母发酵性能最好,糖利用率和乙醇得率分别为99.43%和96.39%。  相似文献   

11.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.  相似文献   

12.
In these studies, liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed‐batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 g L?1 SSB hydrolysis, a fed‐batch reactor with in situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 g L?1 h?1 and 0.36 were obtained, respectively. In the fed‐batch reactor fed with SSB hydrolyzates, these productivity and yield values were 0.44 g L?1 h?1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 g L?1) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:967–972, 2018  相似文献   

13.
Pretreated cotton towels were used as carriers to immobilize Clostridium acetobutylicum CGMCC 5234 cells for butanol or ABE production from glucose and xylose. Results showed that cell immobilization was a promising method to increase butanol concentration, yield and productivity regardless of the sugar sources compared with cell suspension. In this study, a high butanol concentration of 10.02 g/L with a yield of 0.20 g/g was obtained from 60 g/L xylose with 9.9 g/L residual xylose using immobilized cells compared with 8.48 g/L butanol and a yield of 0.141 g/g with 20.2 g/L residual xylose from 60 g/L xylose using suspended cells. In mixed-sugar fermentation (30 g/L glucose plus 30 g/L xylose), the immobilized cultures produced 11.1 g/L butanol with a yield of 0.190 g/g, which were 28.3% higher than with suspended cells (8.65 g/L) during which 30 g/L glucose was utilized completely using both immobilized and suspended cells while 3.46 and 13.1 g/L xylose maintained untilized for immobilized and suspended cells, respectively. Based on the results, we speculated that immobilized cells showed enhanced tolerance to butanol toxicity and the cultures preferred glucose to xylose during ABE fermentation. Moreover, the cultures showed obvious difference when grown between high initial concentrations of glucose and those of xylose. Repeated-batch fermentations from glucose with immobilized cells showed better long-term stability than from xylose. At last, the morphologies of free and immobilized cells adsorbed on pretreated cotton towels during the growth cycle were examined by SEM.  相似文献   

14.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

15.
A K270R mutation of xylose reductase (XR) was constructed by site-direct mutagenesis. Fermentation results of the F106X and F106KR strains, which carried wild type XR and K270R respectively, were compared using different substrate concentrations (from 55 to 220 g/L). After 72 h, F106X produced less ethanol than xylitol, while F106KR produced ethanol at a constant yield of 0.36 g/g for all xylose concentrations. The xylose consumption rate and ethanol productivity increased with increasing xylose concentrations in F106KR strain. In particular, F106KR produced 77.6g/L ethanol from 220 g/L xylose and converted 100 g/L glucose and 100g/L xylose into 89.0 g/L ethanol in 72h, but the corresponding values of F106X strain are 7.5 and 65.8 g/L. The ethanol yield of F106KR from glucose and xylose was 0.42 g/g, which was 82.3% of the theoretical yield. These results suggest that the F106KR strain is an excellent producer of ethanol from xylose.  相似文献   

16.
Mucor indicus fermented dilute-acid lignocellulosic hydrolyzates to ethanol in fed-batch cultivation with complete hexose utilization and partial uptake of xylose. The fungus was tolerant to the inhibitors present in the hydrolyzates. It grew in media containing furfural (1 g/l), hydroxymethylfurfural (1 g/l), vanillin (1 g/l), or acetic acid (7 g/l), but did not germinate directly in the hydrolyzate. However, with fed-batch methodology, after initial growth of M. indicus in 500 ml enzymatic wheat hydrolyzate, lignocellulosic hydrolyzate was fermented with feeding rates 55 and 100 ml/h. The fungus consumed more than 46% of the initial xylose, while less than half of this xylose was excreted in the form of xylitol. The ethanol yield was 0.43 g/g total consumed sugar, and reached the maximum concentration of 19.6 g ethanol/l at the end of feeding phase. Filamentous growth, which is regarded as the main obstacle to large-scale cultivation of M. indicus, was avoided in the fed-batch experiments.  相似文献   

17.
Candida guilliermondii cells, immobilized in Ca-alginate beads, were used for batch xylitol production from concentrated sugarcane bagasse hydrolyzate. Maximum xylitol concentration (20.6 g/L), volumetric productivity (0.43 g/L. h), and yield (0.47 g/g) obtained after 48 h of fermentation were higher than similar immobilized-cell systems but lower than free-cell cultivation systems. Substrates, products, and biomass concentrations were used in material balances to study the ways in which the different carbon sources were utilized by the yeast cells under microaerobic conditions. The fraction of xylose consumed to produce xylitol reached a maximum value (0.70) after glucose and oxygen depletion while alternative metabolic routes were favored by sub-optimal conditions.  相似文献   

18.
In this article, a mathematical model describing the kinetics of ethanol fermentation in a whole cell immobilized tubular fermentor is proposed. Experimental results show reasonable agreement with the proposed model. A procedure for treating the fermentation data for determining the ethanol inhibition constants k(1) and k(2) is described. The ethanol productivity of the immobilized cell fermentor is compared with those of traditional fermentors. Experimental studies indicate that with Saccharomyces cerevisiae (NRRL Y132) culture, ethanol productivity in the range 21.2-83.7 g ethanol L(-1) h(-1) at ethanol concentration of 76-60 g/L can be achieved. This is comparable to or higher than those reported in the literature for yeast. The product yield factor of 0.5 g ethanol/g glucose was obtained. The immobilized cell fermentor does not show washout at dilution rates of 7 h(-1) and shows good stability over a 650-h operating period.  相似文献   

19.
In this study, the alkaline twin-screw extrusion pretreated corn stover was subjected to enzymatic hydrolysis after washing. The impact of solid loading and enzyme dose on enzymatic hydrolysis was investigated. It was found that 68.2 g/L of total fermentable sugar could be obtained after enzymatic hydrolysis with the solid loading of 10 %, while the highest sugar recovery of 91.07 % was achieved when the solid loading was 2 % with the cellulase dose of 24 FPU/g substrate. Subsequently, the hydrolyzate was fermented by Clostridium acetobutylicum ATCC 824. The acetone–butanol–ethanol (ABE) production of the hydrolyzate was compared with the glucose, xylose and simulated hydrolyzate medium which have the same reducing sugar concentration. It was shown that 7.1 g/L butanol and 11.2 g/L ABE could be produced after 72 h fermentation for the hydrolyzate obtained from enzymatic hydrolysis with 6 % solid loading. This is comparable to the glucose and simulated hydrozate medium, and the overall ABE yield could reach 0.112 g/g raw corn stover.  相似文献   

20.
Mutants of Pachysolen tannophilus NRRL Y-2460 have been sought that show enhanced rates of d-xylose fermentation. Mutagenesis followed by enrichment in urea-xylitol broth generally resulted in a lower frequency of good ethanol producers than enrichment in nitrate-xylitol broth. Under aerobic conditions, the best xylose-fermenting strains (which were obtained from nitrate-xylitol broth) produced ethanol from xylose twice as fast and in 32% better yield than the parent strain. Under anaerobic conditions, these strains produced ethanol from xylose 50% faster than (but in the same yield as) the parent strain. These findings show that enrichment in nitrate-xylitol broth is a promising method for obtaining mutants of Pachysolen having enhanced fermentation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号