首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter??s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.  相似文献   

2.
Molecular Genetics and Genomics - Spores have been preferred for mutagenic treatment of Physcomitrella patens. Many mutant strains are, however, sexually sterile and so do not produce spores. We...  相似文献   

3.
Preparing high-quality DNA from moss (Physcomitrella patens)   总被引:1,自引:0,他引:1  
Physcomitrella patens, a moss, is the only land plant that performs high rates of homologous recombination, making it a valuable tool for functional genomics. Unfortunately, commercially available plant DNA preparation kits are ineffective withPhyscomitrella. Furthermore, labor-intensive CTAB preparations produce low yields, and the DNA is degraded and contaminated. We present a protocol that is faster and doubles the DNA yield obtained from standard procedures. The high-quality DNA prepared is suitable for PCR reactions and Southern blot analysis.  相似文献   

4.
RNA interference in the moss Physcomitrella patens   总被引:8,自引:0,他引:8       下载免费PDF全文
The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from related genes. However, RNA interference (RNAi) can provide mutants for both of these situations. We show that RNAi disrupts gene expression in P. patens, adding a significant tool for the study of plant gene function. To assay for RNAi in moss, we constructed a line (NLS-4) expressing a nuclearly localized green fluorescent protein (GFP):beta-glucuronidase (GUS) fusion reporter protein. We targeted the reporter protein with two RNAi constructs, GUS-RNAi and GFP-RNAi, expressed transiently by particle bombardment. Transformed protonemal cells are marked by cobombardment with dsRed2, which diffuses between the nucleus and cytoplasm. Cells transformed with control constructs have nuclear/cytoplasmic red fluorescence and nuclear green fluorescence. In cells transformed with GUS-RNAi or GFP-RNAi constructs, the nuclear green fluorescence was reduced on average 9-fold as soon as 48 h after transformation. Moreover, isolated lines of NLS-4 stably transformed with GUS-RNAi construct have silenced nuclear GFP, indicating that RNAi is propagated stably. Thus, RNAi adds a powerful tool for functional analysis of plant genes in moss.  相似文献   

5.
Stable transformation of the moss Physcomitrella patens   总被引:9,自引:0,他引:9  
Summary We report the stable transformation of Physcomitrella patens to either G418 or hygromycin B resistance following polyethylene glycol-mediated direct DNA uptake by protoplasts. The method described in this paper was used successfully in independent experiments carried out in our two laboratories. Transformation was assessed by the following criteria: selection of antibiotic-resistant plants, mitotic and meiotic stability of phenotypes after removal of selective pressure and stable transmission of the character to the offspring; Southern hybridisation analysis of genomic DNA to show integration of the plasmid DNA; segregation of the resistance gene following crosses with antibiotic-sensitive strains; and finally Southern hybridisation analysis of both resistant and sensitive progeny. In addition to stable transformants, a heterogeneous class of unstable transformants was obtained.  相似文献   

6.
RecA protein is widespread in bacteria, and it plays a crucial role in homologous recombination. We have identified two bacterial-type recA gene homologs (PprecA1, PprecA2) in the cDNA library of the moss Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA2 to the green fluorescent protein (GFP) caused a targeting of PpRecA2 to the chloroplasts. Mutational analysis showed that the first AUG codon acts as initiation codon. Fusion of the full-length PpRecA2 to GFP caused the formation of foci that were colocalized with chloroplast nucleoids. The amounts of PprecA2 mRNA and protein in the cells were increased by treatment with DNA damaging agents. PprecA2 partially complemented the recA mutation in Escherichia coli. These results suggest the involvement of PpRecA2 in the repair of chloroplast DNA.  相似文献   

7.
8.
Efficient gene targeting in the moss Physcomitrella patens   总被引:16,自引:2,他引:16  
The moss Physcomitrella patens is used as a genetic model system to study plant development, taking advantage of the fact that the haploid gametophyte dominates in its life cycle. Transformation experiments designed to target three single-copy genomic loci were performed to determine the efficiency of gene targeting in this plant. Mean transformation rates were 10-fold higher with the targeting vectors and molecular evidence for the integration of exogenous DNA into each targeted locus by homologous recombination is provided. The efficiency of gene targeting determined in these experiments is above 90%, which is in the range of that observed in yeast and several orders of magnitude higher than previous reports of gene targeting in plants. Thus, gene knock-out and allele replacement approaches are directly accessible to study plant development in the moss Physcomitrella patens . Moreover, efficient gene targeting has so far only been observed in lower eukaryotes such as protozoa, yeasts and filamentous fungi, and, as shown here the first example from the plant kingdom is a haplobiontic moss. This suggests a possible correlation between efficient gene targeting and haplo-phase in eukaryotes.  相似文献   

9.
10.
In the current study the isolation and identification of Physcomitrella patens (Hedw.) B.S.G. moss peptides are described. Physcomitrella patens moss is actively used in recent years as a model organism to study the biology of plants. Protoplasts, protonemata and gametophores of the moss are demonstrated for the first time to contain diverse small peptides. From gametophores was isolated and identified 58 peptides that are fragments of 14 proteins, and from protonemata - 49 peptides, fragments of 15 proteins. It was found that the protonemata and gametophores Ph. patens, which are the successive stages of development of this plant, significantly different from each other as a peptide composition and the spectrum of the precursor protein of identified peptides. Isolation of protoplasts of the enzymatic destruction of cell wall protonemata accompanied by massive degradation of intracellular proteins, many of whom are proteins of photosynthesis, which is a characteristic response of plants to stress the impact of environmental factors. A total of moss protoplasts were isolated and identified 323 peptides that are fragments of 79 proteins.  相似文献   

11.
12.
The phylogenetic positions of bryophytes and charophytes, together with their genome features, are important for understanding early land plant evolution. Here we report the complete nucleotide sequence (105,340 bp) of the circular-mapping mitochondrial DNA of the moss Physcomitrella patens. Available evidence suggests that the multipartite structure of the mitochondrial genome in flowering plants does not occur in Physcomitrella. It contains genes for 3 rRNAs (rnl, rns, and rrn5), 24 tRNAs, and 42 conserved mitochondrial proteins (14 ribosomal proteins, 4 ccm proteins, 9 nicotinamide adenine dinucleotide dehydrogenase subunits, 5 ATPase subunits, 2 succinate dehydrogenase subunits, apocytochrome b, 3 cytochrome oxidase subunits, and 4 other proteins). We estimate that 5 tRNA genes are missing that might be encoded by the nuclear genome. The overall mitochondrial genome structure is similar in Physcomitrella, Chara vulgaris, Chaetosphaeridium globosum, and Marchantia polymorpha, with easily identifiable inversions and translocations. Significant synteny with angiosperm and chlorophyte mitochondrial genomes was not detected. Phylogenetic analysis of 18 conserved proteins suggests that the moss-liverwort clade is sister to angiosperms, which is consistent with a previous analysis of chloroplast genes but is not consistent with some analyses using mitochondrial sequences. In Physcomitrella, 27 introns are present within 16 genes. Nine of its intron positions are shared with angiosperms and 4 with Marchantia, which in turn shares only one intron position with angiosperms. The phylogenetic analysis as well as the syntenic structure suggest that the mitochondrial genomes of Physcomitrella and Marchantia retain prototype features among land plant mitochondrial genomes.  相似文献   

13.
After wounding, the moss Physcomitrella patens emits fatty acid derived volatiles like octenal, octenols and (2E)-nonenal. Flowering plants produce nonenal from C18-fatty acids via lipoxygenase and hydroperoxide lyase reactions, but the moss exploits the C20 precursor arachidonic acid for the formation of these oxylipins. We describe the isolation of the first cDNA (PpHPL) encoding a hydroperoxide lyase from a lower eukaryotic organism. The physiological pathway allocation and characterization of a downstream enal-isomerase gives a new picture for the formation of fatty acid derived volatiles from lower plants. Expression of a fusion protein with a yellow fluorescent protein in moss protoplasts showed that PpHPL was found in clusters in membranes of plastids. PpHPL can be classified as an unspecific hydroperoxide lyase having a substrate preference for 9-hydroperoxides of C18-fatty acids but also the predominant substrate 12-hydroperoxy arachidonic acid is accepted. Feeding experiments using arachidonic acid show an increase in the 12-hydroperoxide being metabolized to C8-aldehydes/alcohols and (3Z)-nonenal, which is rapidly isomerized to (2E)-nonenal. PpHPL knock out lines failed to emit (2E)-nonenal while formation of C8-volatiles was not affected indicating that in contrast to flowering plants, PpHPL is only involved in formation of a specific subset of volatiles.  相似文献   

14.
The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for 'reverse genetic' analysis by virtue of its outstanding ability to undertake targeted transgene integration by homologous recombination. However, gene identification through mutagenesis and map-based cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers [amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely populated with molecular markers and anchored to the genome sequence now provides a resource for forward genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene function has evolved for the acquisition of complex developmental strategies within the plant kingdom.  相似文献   

15.
16.
Cold stress has adverse effects on plant growth and development. Plants respond and acclimate to cold stress through various biochemical and physiological processes, thereby acquiring stress tolerance. To better understand the basis for tolerance, we carried out a proteomic study in the model moss, Physcomitrella patens, characterizing gametophore proteins with 2‐DE and mass spectroscopy. Following exposure to 0°C for up to 3 days, out of the more than 1000 protein spots reproducibly resolved, only 45 changed in abundance by at least 1.5‐fold. Of these, 35 were identified by tryptic digestion and mass spectroscopy. Photosynthetic proteins decreased, whereas many catabolic proteins increased. In addition, cold stress up‐regulated a variety of signaling, cytoskeleton, and defense proteins and few proteins in these classes were down‐regulated. Up‐regulated proteins include the 14‐3‐3‐like protein, actin, HSP70s, lipoxygenases, and cytochrome P450 proteins. These results point to pathways that are important for the mechanism of cold stress response in P. patens and by extension to the entire plant kingdom.  相似文献   

17.
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.  相似文献   

18.
Jiang C  Schommer CK  Kim SY  Suh DY 《Phytochemistry》2006,67(23):2531-2540
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.  相似文献   

19.
Because of its simple body plan and ease of gene knockout and allele replacement, the moss Physcomitrella patens is often used as a model system for studies in plant physiology and developmental biology. Gene-trap and enhancer-trap systems are useful techniques for cloning genes and enhancers that function in specific tissues or cells. Additionally, these systems are convenient for obtaining molecular markers specific for certain developmental processes. Elements for gene-trap and enhancer-trap systems were constructed using the uidA reporter gene with either a splice acceptor or a minimal promoter. Through a high rate of transformation conferred by a method utilizing homologous recombination, 235 gene-trap and 1073 enhancer-trap lines were obtained from 5637 and 3726 transgenic lines, respectively. The expression patterns of these trap lines in the moss gametophyte varied. The candidate gene trapped in a gene-trap line YH209, which shows rhizoid-specific expression, was obtained by 5' and 3' RACE. This gene was named PpGLU, and forms a clade with plant acidic alpha-glucosidase genes. Thus, these gene-trap and enhancer-trap systems should prove useful to identify tissue- and cell-specific genes in Physcomitrella.  相似文献   

20.
Stenøien HK 《Heredity》2005,94(1):87-93
Patterns of codon usage bias were studied in the moss model species Physcomitrella patens. A total of 92 nuclear, protein coding genes were employed, and estimated levels of gene expression were tested for association with two measures of codon usage bias and other variables hypothesized to be associated with gene expression. Codon bias was found to be positively associated both with estimated levels of gene expression and GC content in the coding parts of studied genes. However, GC content in noncoding parts, that is, introns and 5' and 3' untranslated regions (UTRs), was not associated with estimated levels of gene expression. It is argued that codon bias is not shaped by mutational bias, but rather by weak natural selection for translational efficiency in P. patens. The possible role of life history characteristics in shaping patterns of codon usage in this species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号