首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

3.
Activated insulin receptor (IR) interacts with its substrates, IRS-1, IRS-2, and Shc via the NPXY motif centered at Y960. This interaction is important for IRS-1 phosphorylation. Studies using the yeast two-hybrid system and sequence identity analysis between IRS-1 and IRS-2 have identified two putative elements, the PTB and SAIN domains, between amino acids 108 and 516 of IRS-1 that are sufficient for receptor interaction. However, their precise function in mediating insulin's bioeffects is not understood. We expressed the PTB and SAIN domains of IRS-1 in HIRcB fibroblasts and 3T3-L1 adipocytes utilizing replication-defective adenoviral infection to investigate their role in insulin signalling. In both cell types, overexpression of either the PTB or the SAIN protein caused a significant decrease in insulin-induced tyrosine phosphorylation of IRS-1 and Shc proteins, IRS-1-associated phosphatidylinositol 3-kinase (PI 3-K) enzymatic activity, p70s6k activation, and p44 and p42 mitogen-activated protein kinase (MAPK) phosphorylation. However, epidermal growth factor-induced Shc and MAPK phosphorylation was unaffected by the overexpressed proteins. These findings were associated with a complete inhibition of insulin-stimulated cell cycle progression. In 3T3-L1 adipocytes, PTB or SAIN expression extinguished IRS-1 phosphorylation with a corresponding 90% decrease in IRS-1-associated PI 3-K activity. p70s6k is a downstream target of PI 3-K, and insulin-stimulated p70s6k was inhibited by PTB or SAIN expression. Interestingly, overexpression of either PTB or SAIN protein did not affect insulin-induced AKT activation or insulin-stimulated 2-deoxyglucose transport, even though both of these bioeffects are inhibited by wortmannin. Thus, interference with the IRS-1-IR interaction inhibits insulin-stimulated IRS-1 and Shc phosphorylation, PI 3-K enzymatic activity, p70s6k activation, MAPK phosphorylation and cell cycle progression. In 3T3-L1 adipocytes, interference with the IR-IRS-1 interaction did not cause inhibition of insulin-stimulated AKT activation or glucose transport. These results indicate a bifurcation or subcompartmentalization of the insulin signalling pathway whereby some targets of PI 3-K (i.e., p70s6k) are dependent on IRS-1-associated PI 3-K and other targets (i.e., AKT and glucose transport) are not. IR-IRS-1 interaction is not essential for insulin's effect on glucose transport, and alternate, or redundant, pathways exist in these cells.  相似文献   

4.
The role of tyrosine phosphorylation of the insulin receptor substrate 1 (IRS-1) was studied utilizing parental CHO cells or CHO cells that overexpress IRS-1, the insulin receptor, or both IRS-1 and the insulin receptor. Insulin stimulation of these four cell lines led to progressive levels of IRS-1 tyrosine phosphorylation of one, two, four, and tenfold. Maximal insulin-stimulated IRS-1 associated Ptdlns 3′-kinase activit in these cells was 1-, 1.5-, 3-, and 3-fold, while insulin sensitivity, as determined by ED50, was 1-, 2.5-, 10-, and 10-fold. Both sensitivity and maximal response paralleled the increased level of phosphotyrosyl-IRS-1; however, the increased level of phosphotyrosyl-IRS-1 seen in CHO/IR/IRS-1 cells did not further increase these responses. Likewise, maximal insulin-stimulated MAP kinase activity in these cell lines increased in parallel with IRS-1 tyrosine phosphorylation except in the CHO/IR/IRS-1 cell lines with activity levels of one-, five-, nine-, and ninefold. However, insulin sensitivity of the MAP and S6 kinases and maximal insulin-stimulated S6 kinase activity was not changed by a twofold increase in phosphotyrosyl-IRS-1, but an increase was observed with insulin-stimulated receptor autophosphorylation and kinase activity in CHO/IR cells which led to a tenfold increase in insulin receptor autophosphorylation and a fourfold increase in IRS-1 tyrosine phosphorylation. Thus, these three kinase activities may be differentially coupled to the activation of the insulin receptor kinase activity via IRS-1 and other possible cellular substrates. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Grb10 has been proposed to inhibit or activate insulin signaling, depending on cellular context. We have investigated the mechanism by which full-length hGrb10gamma inhibits signaling through the insulin receptor substrate (IRS) proteins. Overexpression of hGrb10gamma in CHO/IR cells and in differentiated adipocytes significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2. Inhibition occurred rapidly and was sustained for 60 min during insulin stimulation. In agreement with inhibited signaling through the IRS/PI 3-kinase pathway, we found hGrb10gamma to both delay and reduce phosphorylation of Akt at Thr(308) and Ser(473) in response to insulin stimulation. Decreased phosphorylation of IRS-1/2 may arise from impaired catalytic activity of the receptor, since hGrb10gamma directly associates with the IR kinase regulatory loop. However, yeast tri-hybrid studies indicated that full-length Grb10 blocks association between IRS proteins and IR, and that this requires the SH2 domain of Grb10. In cells, hGrb10gamma inhibited insulin-stimulated IRS-1 tyrosine phosphorylation in a dose-dependent manner, but did not affect IR catalytic activity toward Tyr(972) in the juxtamembrane region and Tyr(1158/1162/1163) in the regulatory domain. We conclude that binding of hGrb10gamma to IR decreases signaling through the IRS/PI 3-kinase/AKT pathway by physically blocking IRS access to IR.  相似文献   

6.
We have recently generated immortalized fetal brown adipocyte cell lines from insulin receptor substrate 1 (IRS-1) knockout mice and demonstrated an impairment in insulin-induced lipid synthesis as compared to wild-type cell lines. In this study, we investigated the consequences of IRS-1 deficiency on mitogenesis in response to insulin. The lack of IRS-1 resulted in the inability of insulin-stimulated IRS-1-deficient brown adipocytes to increase DNA synthesis and enter into S/G2/M phases of the cell cycle. These cells showed a severe impairment in activating mitogen-activated protein kinase kinase (MEK1/2) and p42-p44 mitogen-activated protein kinase (MAPK) upon insulin stimulation. IRS-1-deficient cells also lacked tyrosine phosphorylation of SHC and showed no SHC-Grb-2 association in response to insulin. The mitogenic response to insulin could be partially restored by enhancing IRS-2 tyrosine phosphorylation and its association with Grb-2 by inhibition of phosphatidylinositol 3-kinase activity through a feedback mechanism. Reconstitution of IRS-1-deficient brown adipocytes with wild-type IRS-1 restored insulin-induced IRS-1 and SHC tyrosine phosphorylation and IRS-1-Grb-2, IRS-1-SHC, and SHC-Grb-2 associations, leading to the activation of MAPK and enhancement of DNA synthesis. Reconstitution of IRS-1-deficient brown adipocytes with the IRS-1 mutant Tyr895Phe, which lacks IRS-1-Grb-2 binding, restored SHC-IRS-1 association and SHC-Grb-2 association. However, the lack of IRS-1-Grb-2 association impaired MAPK activation and DNA synthesis in insulin-stimulated mutant cells. These data provide strong evidence for an essential role of IRS-1 and its direct association with Grb-2 in the insulin signaling pathway leading to MAPK activation and mitogenesis in brown adipocytes.  相似文献   

7.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

8.
Tumor necrosis factor alpha (TNFalpha) inhibits insulin action, in part, through serine phosphorylation of IRS proteins; however, the phosphorylation sites that mediate the inhibition are unknown. TNFalpha promotes multipotential signal transduction cascades, including the activation of the Jun NH(2)-terminal kinase (JNK). Endogenous JNK associates with IRS-1 in Chinese hamster ovary cells. Anisomycin, a strong activator of JNK in these cells, stimulates the activity of JNK bound to IRS-1 and inhibits the insulin-stimulated tyrosine phosphorylation of IRS-1. Serine 307 is a major site of JNK phosphorylation in IRS-1. Mutation of serine 307 to alanine eliminates phosphorylation of IRS-1 by JNK and abrogates the inhibitory effect of TNFalpha on insulin-stimulated tyrosine phosphorylation of IRS-1. These results suggest that phosphorylation of serine 307 might mediate, at least partially, the inhibitory effect of proinflammatory cytokines like TNFalpha on IRS-1 function.  相似文献   

9.
Chronic insulin exposure induces serine/threonine phosphorylation and degradation of IRS-1 through a rapamycin-sensitive pathway, which results in a down-regulation of insulin action. In this study, to investigate whether rapamycin (an mTOR inhibitor) could prevent insulin resistance induced by hyperinsulinemia, 3T3-L1 adipocytes were incubated chronically in the presence of insulin with or without the addition of rapamycin. Subsequently, the cells were washed and re-stimulated acutely with insulin. Chronic insulin stimulation caused a reduction of GLUT-4 and IRS-1 proteins with a correlated decrease in acute insulin-induced PKB and MAPK phosphorylations as well as a reduction in insulin-stimulated glucose transport. Rapamycin prevented the reduction of IRS-1 protein levels and insulin-induced PKB Ser-473 phosphorylation with a partial normalization of insulin-induced glucose transport. In contrast, rapamycin had no effect on the decrease in insulin-induced MAPK phosphorylation or GLUT-4 protein levels. These results suggest that chronic insulin exposure leads to a down-regulation of PKB and MAPK pathways through different mechanisms in adipocytes.  相似文献   

10.
Insulin rapidly stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of insulin receptor substrates (IRS), which in turn associates and activates PI 3-kinase, leading to an increase in glucose uptake. Phosphorylation of IRS proteins and activation of downstream kinases by insulin are transient and the mechanisms for the subsequent downregulation of their activity are largely unknown. We report here that the insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase association to IRS-1 were strongly sustained by the proteasome inhibitors, MG132 and lactacystin. In contrast, no effect was detected on the insulin receptor and IRS-2 tyrosine phosphorylation. Interestingly, lactacystin also preserved PKB activation and insulin-induced glucose uptake. In contrast, calpeptin, a calpain inhibitor, was ineffective. Tyrosine phosphatase assays were also performed, showing that lactacystin was not functioning directly as a tyrosine phosphatase inhibitor "in vitro." In conclusion, proteasome inhibitors can regulate the tyrosine phosphorylation of IRS-1 and the downstream insulin signaling pathway, leading to glucose transport.  相似文献   

11.
Insulin and insulin-like growth factor I signals are mediated via phosphorylation of a family of insulin receptor substrate (IRS) proteins, which may serve both complementary and overlapping functions in the cell. To study the metabolic effects of these proteins in more detail, we established brown adipocyte cell lines from wild type and various IRS knockout (KO) animals and characterized insulin action in these cells in vitro. Preadipocytes derived from both wild type and IRS-2 KO mice could be fully differentiated into mature brown adipocytes. In differentiated IRS-2 KO adipocytes, insulin-induced glucose uptake was decreased by 50% compared with their wild type counterparts. This was the result of a decrease in insulin-stimulated Glut4 translocation to the plasma membrane. This decrease in insulin-induced glucose uptake could be partially reconstituted in these cells by retrovirus-mediated re-expression of IRS-2, but not overexpression of IRS-1. Insulin signaling studies revealed a total loss of IRS-2-associated phosphatidylinositol (PI) 3-kinase activity and a reduction in phosphotyrosine-associated PI 3-kinase by 30% (p < 0.05) in the KO cells. The phosphorylation and activity of Akt, a major downstream effector of PI 3-kinase, as well as Akt-dependent phosphorylation of glycogen synthase kinase-3 and p70S6 kinase were not affected by the lack of IRS-2; however, there was a decrease in insulin stimulation of Akt associated with the plasma membrane. These results provide evidence for a critical role of IRS-2 as a mediator of insulin-stimulated Glut4 translocation and glucose uptake in adipocytes. This occurs without effects in differentiation, total activation of Akt and its downstream effectors, but may be caused by alterations in compartmentalization of these downstream signals.  相似文献   

12.
Incubation of cells with insulin leads to a transient rise in Tyr phosphorylation of insulin receptor substrate (IRS) proteins, accompanied by elevation in their Ser(P)/Thr(P) content and their dissociation from the insulin receptor (IR). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, selectively prevented the increase in Ser(P)/Thr(P) content of IRS-1, its dissociation from IR, and the decrease in its Tyr(P) content following 60 min of insulin treatment. Four conserved phosphorylation sites within the phosphotyrosine binding/SAIN domains of IRS-1 and IRS-2 served as in vitro substrates for protein kinase B (PKB), a Ser/Thr kinase downstream of phosphatidylinositol 3-kinase. Furthermore, PKB and IRS-1 formed stable complexes in vivo, and overexpression of PKB enhanced Ser phosphorylation of IRS-1. Overexpression of PKB did not affect the acute Tyr phosphorylation of IRS-1; however, it significantly attenuated its rate of Tyr dephosphorylation following 60 min of treatment with insulin. Accordingly, overexpression of IRS-1(4A), lacking the four potential PKB phosphorylation sites, markedly enhanced the rate of Tyr dephosphorylation of IRS-1, while inclusion of vanadate reversed this effect. These results implicate a wortmannin-sensitive Ser/Thr kinase, different from PKB, as the kinase that phosphorylates IRS-1 and acts as the feedback control regulator that turns off insulin signals by inducting the dissociation of IRS proteins from IR. In contrast, insulin-stimulated PKB-mediated phosphorylation of Ser residues within the phosphotyrosine binding/SAIN domain of IRS-1 protects IRS-1 from the rapid action of protein-tyrosine phosphatases and enables it to maintain its Tyr-phosphorylated active conformation. These findings implicate PKB as a positive regulator of IRS-1 functions.  相似文献   

13.
The ability of insulin to stimulate protein synthesis and cellular growth is mediated through the insulin receptor (IR), which phosphorylates Tyr residues in the insulin receptor substrate-signaling proteins (IRS-1 and IRS-2), Gab-1, and Shc. These phosphorylated substrates directly bind and activate enzymes such as phosphatidylinositol 3'-kinase (PI3K) and the guanine nucleotide exchange factor for p21Ras (GRB-2/SOS), which are in turn required for insulin-stimulated protein synthesis, cell cycle progression, and prevention of apoptosis. We have now shown that one or more members of the atypical protein kinase C group, as exemplified by the zeta isoform (PKC zeta), are downstream of IRS-1 and P13K and mediate the effect of insulin on general protein synthesis. Ectopic expression of constitutively activated PKC zeta eliminates the requirement of IRS-1 for general protein synthesis but not for insulin-stimulated activation of 70-kDa S6 kinase (p70S6K), synthesis of growth-regulated proteins (e.g., c-Myc), or mitogenesis. The fact that PKC zeta stimulates general protein synthesis but not activation of p70S6K indicates that PKC zeta activation does not involve the proto-oncogene Akt, which is also activated by PI3K. Yet insulin is still required for the stimulation of general protein synthesis in the presence of constitutively active PKC zeta and in the absence of IRS-1, suggesting a requirement for the convergence of the IRS-1/PI3K/PKC zeta pathway with one or more additional pathways emanating from the IR, e.g., Shc/SOS/p21Ras/mitogen-activated protein kinase. Thus, PI3K appears to represent a bifurcation in the insulin signaling pathway, one branch leading through PKC zeta to general protein synthesis and one, through Akt and the target of rapamycin (mTOR), to growth-regulated protein synthesis and cell cycle progression.  相似文献   

14.
Chronic leptin treatment markedly enhances the effect of insulin on hepatic glucose production unproportionally with respect to body weight loss and increased insulin sensitivity. In the present study the cross-talk between insulin and leptin was evaluated in rat liver. Upon stimulation of JAK2 tyrosine phosphorylation, leptin induced JAK2 co-immunoprecipitation with STAT3, STAT5b, IRS-1 and IRS-2. This phenomenon parallels the leptin-induced tyrosine phosphorylation of STAT3, STAT5b, IRS-1 and IRS-2. Acutely injected insulin stimulated a mild increase in tyrosine phosphorylation of JAK2, STAT3 and STAT5b. Leptin was less effective than insulin in stimulating IRS phosphorylation and their association with PI 3-kinase. Simultaneous treatment with both hormones yielded no change in maximal phosphorylation of STAT3, IRS-1, IRS-2 and Akt, but led to a marked increase in tyrosine phosphorylation of JAK2 and STAT5b when compared with isolated administration of insulin or leptin. This indicates that there is a positive cross-talk between insulin and leptin signaling pathways at the level of JAK2 and STAT5b in rat liver.  相似文献   

15.
The activation of the protein kinase C (PKC) family of serine/threonine kinases contributes to the modulation of insulin signaling, and the PKC-dependent phosphorylation of insulin receptor substrate (IRS)-1 has been implicated in the development of insulin resistance. Here we demonstrate Ser(357) of rat IRS-1 as a novel PKC-delta-dependent phosphorylation site in skeletal muscle cells upon stimulation with insulin and phorbol ester using Ser(P)(357) antibodies and active and kinase dead mutants of PKC-delta. Phosphorylation of this site was simulated using IRS-1 Glu(357) and shown to reduce insulin-induced tyrosine phosphorylation of IRS-1, to decrease activation of Akt, and to subsequently diminish phosphorylation of glycogen synthase kinase-3. When the phosphorylation was prevented by mutation of Ser(357) to alanine, these effects of insulin were enhanced. When the adjacent Ser(358), present in mouse and rat IRS-1, was mutated to alanine, which is homologous to the human sequence, the insulin-induced phosphorylation of glycogen synthase kinase-3 or tyrosine phosphorylation of IRS-1 was not increased. Moreover, both active PKC-delta and phosphorylation of Ser(357) were shown to be necessary for the attenuation of insulin-stimulated Akt phosphorylation. The phosphorylation of Ser(357) could lead to increased association of PKC-delta to IRS-1 upon insulin stimulation, which was demonstrated with IRS-1 Glu(357). Together, these data suggest that phosphorylation of Ser(357) mediates at least in part the adverse effects of PKC-delta activation on insulin action.  相似文献   

16.
Insulin acts on its target tissues by specific interaction with the cell surface insulin receptor (IR). The IR possesses an intrinsic tyrosine kinase (TK) activity which is stimulated by insulin binding. This TK activity is required for many aspects of insulin signalling. We had earlier reported that human plasma α2-HS glycoprotein (α2-HSG) inhibits insulin-stimulated mitogenesis at the level of IR-TK (Mol Endo 7: 1445–1455, 1993). In the present study, using recombinant α2-HSG, which possesses 50–100 times the specific activity of plasma α2-HSG, we have further investigated the molecular basis of this effect. We examined the insulin-stimulated Ras signalling pathway in Chinese Hamster Ovary cells overexpressing the human IR, α2-HSG inhibits insulin-induced tyrosine phosphorylation of IRS-1 and the subsequent association of GRB2, as well as Sos, with IRS-1. This inhibition results in reduced guanine nucleotide exchange in p21ras. α2-HSG also inhibits the stimulation of Raf phosphorylation, in response to insulin, leading to inhibition of MEK activity. In a parallel pathway, α2-HSG also inhibits insulin-induced tyrosine phosphorylation of Shc. However, α2-HSG does not affect any of the metabolic actions of insulin tested in these cells. These results suggest that, while insulin's mitogenic effects can be abolished by inhibition of insulin-induced IR-TK, propagation of signals for metabolic activities might utilize alternate or rescue mechanisms.  相似文献   

17.
Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.  相似文献   

18.
Prolonged immobilization depresses insulin-induced glucose transport in skeletal muscle and leads to a catabolic state in the affected areas, with resultant muscle wasting. To elucidate the altered intracellular mechanisms involved in the insulin resistance, we examined insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit (IR-beta) and insulin receptor substrate (IRS)-1 and activation of its further downstream molecule, phosphatidylinositol 3-kinase (PI 3-K), after unilateral hindlimb immobilization in the rat. The contralateral hindlimb served as control. After 7 days of immobilization of the rat, insulin was injected into the portal vein, and tibialis anterior muscles on both sides were extracted. Immobilization reduced insulin-stimulated tyrosine phosphorylation of IR-beta and IRS-1. Insulin-stimulated binding of IRS-1 to p85, the regulatory subunit of PI 3-K, and IRS-1-associated PI 3-K activity were also decreased in the immobilized hindlimb. Although IR-beta and p85 protein levels were unchanged, IRS-1 protein expression was downregulated by immobilization. Thus prolonged immobilization may cause depression of insulin-stimulated glucose transport in skeletal muscle by altering insulin action at multiple points, including the tyrosine phosphorylation, protein expression, and activation of essential components of insulin signaling pathways.  相似文献   

19.
During pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats.  相似文献   

20.
A pathway sensitive to rapamycin, a selective inhibitor of mammalian target of rapamycin (mTOR), down-regulates effects of insulin such as activation of Akt (protein kinase B) via proteasomal degradation of insulin receptor substrate 1 (IRS-1). We report here that the pathway also plays an important role in insulin-induced subcellular redistribution of IRS-1 from the low-density microsomes (LDM) to the cytosol. After prolonged insulin stimulation, inhibition of the redistribution of IRS-1 by rapamycin resulted in increased levels of IRS-1 and the associated phosphatidylinositol (PI) 3-kinase in both the LDM and cytosol, whereas the proteasome inhibitor lactacystin increased the levels only in the cytosol. Since rapamycin but not lactacystin enhances insulin-stimulated 2-deoxyglucose (2-DOG) uptake, IRS-1-associated PI 3-kinase localized at the LDM was suggested to be important in the regulation of glucose transport. The amino acid deprivation attenuated and the amino acid excess enhanced insulin-induced Ser/Thr phosphorylation and subcellular redistribution and degradation of IRS-1 in parallel with the effects on phosphorylation of p70 S6 kinase and 4E-BP1. Accordingly, the amino acid deprivation increased and the amino acid excess decreased insulin-stimulated activation of Akt and 2-DOG uptake. Furthermore, 2-DOG uptake was affected by amino acid availability even when the degradation of IRS-1 was inhibited by lactacystin. We propose that subcellular redistribution of IRS-1, regulated by the mTOR-dependent pathway, facilitates proteasomal degradation of IRS-1, thereby down-regulating Akt, and that the pathway also negatively regulates insulin-stimulated glucose transport, probably through the redistribution of IRS-1. This work identifies a novel function of mTOR that integrates nutritional signals and metabolic signals of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号