首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cryptococcus neoformans is an important human pathogenic fungus with a defined sexual cycle and well-developed molecular and genetic approaches. C. neoformans is predominantly haploid and has two mating types, MATa and MATalpha. Mating is known to be regulated by nutritional limitation and thought also to be regulated by pheromones. Previously, a portion of the MATalpha locus was cloned, and a presumptive pheromone gene, MFalpha1, was identified by its ability to induce conjugation tube-like filaments when introduced by transformation into MATa cells. Here, the ability of the MFalpha1 gene to induce these morphological changes in MATa cells was used as a phenotypic assay to perform a structure-function analysis of the gene. We show that the MFalpha1 open reading frame is required for the morphological response of MATa cells. We also find that the cysteine residue of the C-terminal CAAX motif is required for activity of the MFalpha1 pheromone. In addition, we use a reporter system to measure the expression levels of the MFalpha1 pheromone gene and find that two signals, nutrient starvation and the presence of factors secreted by mating partner cells, impinge on this promoter and regulate MFalpha1 expression. We identify a second pheromone gene, MFalpha2, and show phenotypically that this gene is also expressed. Finally, we have synthesized the MFalpha1 pheromone and show that only the predicted mature modified form of the alpha-factor peptide triggers morphological responses in MATa cells.  相似文献   

3.
4.
5.
Hsueh YP  Shen WC 《Eukaryotic cell》2005,4(1):147-155
Fungal pheromones function during the initial recognition stage of the mating process. One type of peptide pheromone identified in ascomycetes and basidiomycetes terminates in a conserved CAAX motif and requires extensive posttranslational modifications to become mature and active. A well-studied representative is the a-factor of Saccharomyces cerevisiae. Unlike the typical secretory pathway utilized by most peptides, an alternative mechanism involving the ATP-binding cassette transporter Ste6 is used for the export of mature a-factor. Cryptococcus neoformans, a bipolar human pathogenic basidiomycete, produces CAAX motif-containing lipopeptide pheromones in both MATa and MATalpha cells. Virulence studies with a congenic pair of C. neoformans serotype D strains have shown that MATalpha cells are more virulent than MATa cells. Characterization of the MATalpha pheromones indicated that an autocrine signaling loop may contribute to the differentiation and virulence of MATalpha cells. To further address the role of pheromones in the signaling loop, we identified a STE6 homolog in the C. neoformans genome and determined its function by gene disruption. The ste6 mutants in either mating-type background showed partially impaired mating functions, and mating was completely abolished in a bilateral mutant cross. Surprisingly, the MATalpha ste6 mutant does not exhibit a defect in monokaryotic fruiting, suggesting that the activation of the autocrine signaling loop by the pheromone is via a Ste6-independent mechanism. MFalpha pheromone itself is essential for this process and could induce the signaling response intracellularly in MATalpha cells. Our data demonstrate that Ste6 is evolutionarily conserved for mating and is not required for monokaryotic fruiting in C. neoformans.  相似文献   

6.
In this study we investigated the relationship between the MATalpha locus of Cryptococcus neoformans and several MATalpha-specific mitogen-activated protein (MAP) kinase signal transduction cascade genes, including STE12alpha, STE11alpha, and STE20alpha. To resolve the location of the genes, we screened a cosmid library of the MATalpha strain B-4500 (JEC21), which was chosen for the C. neoformans genome project. We isolated several overlapping cosmids spanning a region of about 71 kb covering the entire MATalpha locus. It was found that STE12alpha, STE11alpha, and STE20alpha are imbedded within the locus rather than closely linked to the locus. Furthermore, three copies of MFalpha, the mating type alpha-pheromone gene, a MATalpha-specific myosin gene, and a pheromone receptor (CPRalpha) were identified within the locus. We created a physical map, based on the restriction enzyme BamHI, and identified both borders of the MATalpha locus. The MATalpha locus of C. neoformans is approximately 50 kb in size and is one of the largest mating type loci reported among fungi with a one-locus, two-allele mating system.  相似文献   

7.
Cryptococcus neoformans is a basidiomycetous fungal pathogen that infects the central nervous system. The organism has a defined sexual cycle involving mating between haploid MATalpha and MATa cells. Recent studies have revealed signaling cascades that coordinately regulate differentiation and virulence of C. neoformans. One signaling cascade involves a conserved G-protein alpha subunit and cAMP, and senses nutrients during mating and virulence. The second is a conserved mitogen activated protein (MAP) kinase cascade that senses pheromone during mating, and also regulates haploid fruiting and virulence. Interestingly, some of the MAP kinase components are encoded by the MAT locus itself, which may explain the unique association of the MATalpha locus with physiology and virulence.  相似文献   

8.
Cryptococcus neoformans is a heterothallic basidiomycetous yeast that primarily infects immunocompromised individuals. Dikaryotic hyphae resulting from the fusion of the MATa and MATalpha mating type strains represent the filamentous stage in the sexual life cycle of C. neoformans. In this study we demonstrate that the production of dikaryotic filaments is inhibited by blue light. To study blue light photoresponse in C. neoformans, we have identified and characterized two genes, CWC1 and CWC2, which are homologous to Neurospora crassa wc-1 and wc-2 genes. Conserved domain analyses indicate that the functions of Cwc1 and Cwc2 proteins may be evolutionally conserved. To dissect their roles in the light response, the CWC1 gene deletion mutants are created in both mating type strains. Mating filamentation in the bilateral cross of cwc1 MATa and MATalpha strains is not sensitive to light. The results indicate that Cwc1 may be an essential regulator of light responses in C. neoformans. Furthermore, overexpression of the CWC1 or CWC2 gene requires light activation to inhibit sexual filamentation, suggesting both genes may function together in the early step of blue light signalling. Taken together, our findings illustrate blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in C. neoformans.  相似文献   

9.
Partial sequence analysis of the Cryptococcus neoformans MATalpha mating type locus revealed the presence of a gene with substantial sequence similarity to other fungal mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK) genes. The C. neoformans gene, designated STE11alpha, showed the highest degree of similarity to the Neurospora crassa nrc-1, Schizosaccharomyces pombe byr2 and Saccharomyces cerevisiae STE11 genes. A polymerase chain reaction-mediated sib-selection technique was successfully adapted for the purpose of disrupting STE11alpha. C. neoformans ste11alphaDelta mutants were found to be sterile, consistent with the phenotypes of ste11 and byr2 mutants in S. cerevisiae and S. pombe respectively. Haploid ste11alphaDelta mutants were also found to be unable to produce hyphae, suggesting that the C. neoformans gene is functionally conserved when compared with its S. cerevisiae MAPKKK counterpart. Comparison of the wild-type STE11alpha strain with a ste11alphaDelta disruptant for virulence using the mouse model showed that the ste11alphaDelta strain was less virulent, but the difference was only minor. In spite of some of the conserved functions of STE11alpha, linkage analysis showed that STE11alpha is only found in mating type alpha strains. These results demonstrate that, although functionally conserved, the mating pathway in C. neoformans has a unique organization.  相似文献   

10.
Cryptococcus neoformans possesses two mating types, MAT α and MATa . α-Cells are more virulent than a -cells and are also, unlike a -cells, capable of producing extensive hyphae in the haploid phase. The molecular analysis of hyphae production in C. neoformans has resulted in the identification of a gene which displays substantial similarity to other fungal STE12 genes, including the presence of a highly conserved homeodomain. Overexpression of the C. neoformans gene resulted in poor growth, altered morphology and the presence of hyphal projections, phenotypes reported in similar studies of the Saccharomyces cerevisiae STE12 gene. Overexpression was also found to induce MF α, a pheromone, and CNLAC1 , a confirmed C. neoformans virulence gene. The C. neoformans STE12 α gene, however, has one striking difference from other fungal STE12 genes; it is found only in α-cells. The existence of STE12 α in C. neoformans suggests that this fungus has elements of a conserved MAP kinase cascade, which may be organized in a novel manner.  相似文献   

11.
12.
Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle. The gene encoding a heterotrimeric G-protein beta subunit, GPB1, was cloned and disrupted. gpb1 mutant strains are sterile, indicating a role for this gene in mating. GPB1 plays an active role in mediating responses to pheromones in early mating steps (conjugation tube formation and cell fusion) and signals via a mitogen-activated protein (MAP) kinase cascade in both MATalpha and MATa cells. The functions of GPB1 are distinct from those of the Galpha protein GPA1, which functions in a nutrient-sensing cyclic AMP (cAMP) pathway required for mating, virulence factor induction, and virulence. gpb1 mutant strains are also defective in monokaryotic fruiting in response to nitrogen starvation. We show that MATa cells stimulate monokaryotic fruiting of MATalpha cells, possibly in response to mating pheromone, which may serve to disperse cells and spores to locate mating partners. In summary, the Gbeta subunit GPB1 and the Galpha subunit GPA1 function in distinct signaling pathways: one (GPB1) senses pheromones and regulates mating and haploid fruiting via a MAP kinase cascade, and the other (GPA1) senses nutrients and regulates mating, virulence factors, and pathogenicity via a cAMP cascade.  相似文献   

13.
K Kuchler  R E Sterne    J Thorner 《The EMBO journal》1989,8(13):3973-3984
Saccharomyces cerevisiae MATa cells release a lipopeptide mating pheromone, a-factor. Radiolabeling and immunoprecipitation show that MATa ste6 mutants produce pro-a-factor and mature a-factor intracellularly, but little or no extracellular pheromone. Normal MATa cells carrying a multicopy plasmid containing both MFa1 (pro-a-factor structural gene) and the STE6 gene secrete a-factor at least five times faster than the same cells carrying only MFa1 in the same vector. The nucleotide sequence of the STE6 gene predicts a 1290 residue polypeptide with multiple membrane spanning segments and two hydrophilic domains, each strikingly homologous to a set of well-characterized prokaryotic permeases (including hlyB, oppD, hisP, malK and pstB) and sharing even greater identity with mammalian mdr (multiple drug resistance) transporters. These results suggest that the STE6 protein in yeast, and possibly mdr in animals, is a transmembrane translocator that exports polypeptides by a route independent of the classical secretory pathway.  相似文献   

14.
Interspecific and intervarietal hybridization may contribute to the biological diversity of fungal populations. Cryptococcus neoformans is a pathogenic yeast and the most common fungal cause of meningitis in patients with AIDS. Most patients are infected with either of the two varieties of C. neoformans, designated as serotype A (C. neoformans var. grubii) or serotype D (C. neoformans var. neoformans). In addition, serotype AD strains, which are hybrids of these two varieties, are commonly isolated from clinical and environmental samples. While most isolates of serotype A and serotype D are haploid, AD strains are diploid or aneuploid, and contain two sets of chromosomes and two mating type alleles, MATa and MATalpha, one from each of the serotypes. The global population of serotype A is dominated by isolates with the MATalpha mating type (Aalpha); however, about half of the globally analyzed AD strains possess the extremely rare serotype A MATa allele (Aa). We previously described an unusual population of serotype A in Botswana, in which 25% of the strains contain the rare MATa allele. Here we utilized two methods, phylogenetic analysis of three genes and genotyping by scoring amplified fragment length polymorphisms, and discovered that AD hybrid strains possessing the rare serotype A MATa allele (genotype AaDalpha) cluster with isolates of serotype A from Botswana, whereas AD hybrids that possess the MATalpha serotype A allele (AalphaDa and AalphaDalpha) cluster with cosmopolitan isolates of serotype A. We also determined that AD hybrid strains are more resistant to UV irradiation than haploid serotype A strains from Botswana. These findings support two hypotheses: (i) AaDalpha strains originated in sub-Saharan Africa from a cross between strains of serotypes A and D; and (ii) this fusion produced hybrid strains with increased fitness, enabling the Botswanan serotype A MATa genome, which is otherwise geographically restricted, to survive, emigrate, and propagate throughout the world.  相似文献   

15.
The basidiomycetous yeast Cryptococcus neoformans infects humans and causes a meningoencephalitis that is uniformly fatal if untreated. The organism has a defined sexual cycle involving mating of haploid MATa and MATalpha strains, gene disruption by transformation and homologous recombination is now readily accomplished, and robust animal models for infection have been well established. In addition, a pair of congenic MATalpha and MATa haploid strains have been constructed that permit detailed studies on physiology and virulence by classical genetic approaches. These strains represent a valuable resource for further studies in this organism, and the genomic sequence of one of these strains, JEC21 (=B-4500), was recently chosen to be sequenced by an international consortium. Because of the importance of these strains for genetic studies in C. neoformans and the fact that the genomic sequence of one of these strains is in progress, we review here how these congenic strains were originally constructed.  相似文献   

16.
Cryptococcus neoformans is a model basidiomycete yeast. Strains of this species belong to one of two mating types: mating type a (MATa) or mating type alpha (MATalpha). In typical crosses between MATa and MATalpha strains, the progeny inherit mitochondria from the MATa parent. However, the underlying mechanisms remain largely unknown. To help elucidate the molecular mechanisms, we examined the effects of four environmental factors on the patterns of mtDNA inheritance. These factors are temperature, UV irradiation, and the addition of either the methylation inhibitor 5-aza-2'-deoxycytidine (5-adc) or the ubiquitination inhibitor ammonium chloride. Except temperature, the other three factors have been shown to influence organelle inheritance during sexual mating in other eukaryotes. Our results indicate that while the application of 5-adc or ammonium chloride did not influence mtDNA inheritance in C. neoformans, both UV irradiation and high temperature treatments did. Progeny from a cross involving a high temperature-sensitive mutant with the calcineurin subunit A gene deleted showed biparental mtDNA inheritance in all examined temperatures, consistent with a role of calcineurin and temperature in mtDNA inheritance. Furthermore, the zygote progeny population from a cross performed at a high-temperature environment had a greater variability in their vegetative fitness than that from the same cross conducted at a low temperature. Our results indicate a potentially adaptive role of biparental mtDNA inheritance and mtDNA recombination in certain environments in C. neoformans.  相似文献   

17.
Cryptococcus neoformans is an opportunistic human pathogenic fungus with a defined sexual cycle. Clinical and environmental isolates of C. neoformans are haploid, and the diploid stage of the lifecycle is thought to be transient and unstable. In contrast, we find that diploid strains are readily obtained following genetic crosses of congenic MATalpha and MATa strains. At 37 degrees C, the diploid strains grow as yeast cells with a single nucleus that is larger than a haploid nucleus, contains a 2n content of DNA by FACS analysis, and is heterozygous for the MATalpha and MATa loci. At 24 degrees C, these diploid self-fertile strains filament and sporulate, producing recombinant haploid progeny in which meiotic segregation has occurred. In contrast to dikaryotic filament cells that are typically linked by fused clamp connections during mating, self-fertile diploid strains produce monokaryotic filament cells with unfused clamp connections. We also show that these diploid strains can be transformed and sporulated and that an integrated selectable marker segregates in a mendelian fashion. The diploid state could play novel roles in the lifecycle and virulence of the organism and can be exploited for the analysis of essential genes. Finally, the observation that dimorphism is thermally regulated suggests similarities between the lifecycle of C. neoformans and other thermally dimorphic human pathogenic fungi, including Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Paracoccidioides brasiliensis, and Sporothrix schenkii.  相似文献   

18.
Under appropriate conditions, haploid Cryptococcus neoformans cells can undergo a morphological switch from a budding yeast form to develop hyphae and viable basidiospores, which resemble those produced by mating. This process, known as haploid fruiting, was previously thought to occur only in MATalpha strains. We identified two new strains of C. neoformans var. neoformans serotype D that are MATa type and are able to haploid fruit. Further, a MATa reference strain, B-3502, also produced hyphae and fruited after prolonged incubation on filament agar. Over-expression of STE12a dramatically enhanced the ability of all MATa strains tested to filament. Segregation analysis of haploid fruiting ability confirmed that haploid fruiting is not MATalpha-specific. Our results indicate that MATa cells are intrinsically able to haploid fruit and previous observations that they do not were probably biased by the examination of a small number of genetically related isolates that have been maintained in the laboratory for many years.  相似文献   

19.
Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号