首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel strategy for the maximum production of a biodegradable copolymer, poly(3-hydroxybutyric-co-hydroxyvaleric) acid, P(HB-co-HV), was developed, based on the kinetic parameters obtained from fed-batch culture experiments of Alcaligenes eutrophus. The effects of various culture conditions such as mole ratio of carbon:nitrogen in feed medium (C/N); total fatty acids concentrations; and addition ratio of fatty acids on cultivation properties such as the specific rates of cell formation, mu (h-1), P(HB-co-HV) production, rho[g.P(HB-co-HV)/g.cell/h], production yield from fatty acids [g.P(HB-co-HV)/g.fatty acid], and mole fraction of monomeric units in the copolymer [mol.(HV)/{mol.(HB) + mol.(HV)}], were investigated. When nitrogen supply was sufficient for cell growth; that is, C/N (mol.nitrogen atom/mol.carbon atom) was low, mu was high, but rho and the production yield were low, because fatty acids were used mainly for energy formation and anabolic reactions in the cells. On the other hand, when nitrogen supply was limited for cell growth-that is, C/N was high-rho was high. The highest value of rho was obtained when C/N was 75. As the mole ratio of valeric acid (VA) to butyric acid (BA) in the feed medium was increased, the mole fraction of HV units in P(HB-co-HV) increased linearly. When the ratio of BA to VA in the feed medium was kept at a constant value, but C/N was increased, the mole fraction of HV units decreased. In particular, when C/N was >12, the mole fraction of HV units decreased linearly as C/N increased. When VA was utilized as the sole carbon source and C/N was fixed at 4, P(HB-co-HV) with the highest mole fraction of HV units (67 mol%) was achieved. From these results, it was shown that both C/N and the mole ratio of BA to VA in the feed medium should be well controlled for an optimal production of P(HB-co-HV) with the desired value of the mole fraction of HV units. When the addition ratio of butyric acid was 50 wt% of total fatty acids, a maximum production strategy for P(HB-co-HV) was developed and realized experimentally, which was based on a model of the relationship between mu and rho.  相似文献   

2.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

3.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

4.
《Process Biochemistry》2014,49(9):1409-1414
Spent coffee grounds (SCG) are solid fraction wastes deriving from coffee industries, the disposal of which represents a serious environmental issue. This work aims at the conversion of hydrolysate of SCG (SCGH) into polyhydroxyalkanoates (PHA) by Burkholderia cepacia. The bacteria was capable of SCGH utilization and production of copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(HB-co-HV]. Levulinic acid present in SCGH probably served as the precursor of 3HV for the copolymer biosynthesis. To improve the PHA yields, various detoxification methods were tested. The extraction of polyphenols from SCG by ethanol prior to the hydrolysis seems to be the most promising, since, apart from the fact that it enhanced the PHA yields by about 25%, polyphenols extracted from SCG may represent important side products, because they might be used for the production of functional foods and other high value products.  相似文献   

5.
An alcohol utilizing Alcaligenes eutrophus produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer under phosphate limitation. Fermentation was performed for 42-46 h in a computer-controlled 5-L working volume fed-batch fermentor using ethanol and propanol as carbon sources. The culture experienced phosphate limitation in approximately 19 h. When propanol was used as a sole carbon source, 24 g/L of copolymer with 36.5 mol % of hydroxyvalerate (HV) was produced at a polymer yield of 0.41 g polymer/g alcohol (g/g) and an average polymer production rate of 0.08 g polymer/g residual biomass-h (g/g-h). Two experiments switching alcohol after phosphate exhaustion resulted in better polymer production (g/L), polymer yield (g/g) on alcohol, HV yield (g/g) on propanol, and average polymer production rate (g/g-h) as compared to propanol run without alcohol switching. One switching experiment was from a mixture of 50% ethanol and 50% propanol to 100% propanol and the other experiment was from 100% ethanol to a mixture of 65% ethanol and 35% propanol. Polymer yield for these two experiments was 0.51 g/g and 0.46 g/g, respectively. However, HV mol % in the copolymer for these two runs (30.8 mol % 12.6 mol % respectively) was lower compared to propanol run without alcohol switching (3605 mol %). Direct switch from ethanol to propanol did not support cell growth and polymer production. Polymer production rate and polymer yield changed with time, and the pattern was dependent upon the alcohol feeding mode. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Bacillus megaterium strain OU303A isolated from municipal sewage sludge was selected for the study of biosynthesis of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate P (HB-co-HV) copolymer. The strain yielded a maximum of 62.43% DCW polymer in the medium containing glycerol as carbon source, which was followed by 58.63% DCW polymer in glucose containing medium. We found that this strain was capable of producing 2.5% hydroxyvalerate copolymer from a single carbon substrate, glucose. The strain showed an increase in the amount of HV monomer content, when the precursor for the copolymer was included in the fermentation medium. The characterization of the biopolymers was carried out using FTIR, GC-MS, H1 NMR and DSC. This is the first report of B. megaterium strain producing HV copolymer, without the addition of any precursor in the fermentation medium.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) production was carried out under various C:N ratios. A ratio of 100 resulted best polymer yield. C-source was an important factor in synthesis. For example, as the ratio of valeric acid (C5) to butyric acid (C4) in N-free medium was increased, the mole fraction of HV in the copolymer increased. When soy waste was used as a C-source a copolymer, a high HV mole fraction (HB:HV, 75:25) was produced while when malt waste was used, a much lower HV mole fraction (HB:HV, 90:10) was generated. It was concluded that activated sludge bacteria could be induced to produce PHAs using food wastes as C-sources and this could be the basis for production of biodegradable plastics.  相似文献   

8.
Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.  相似文献   

9.
In this study, the possibility of manipulating biopolymer composition in mixed culture polyhydroxyalkanoate (PHA) production from fermented molasses was assessed by studying the effects of substrate volatile fatty acid (VFA) composition and feeding regime (pulse wise versus continuous). It was found that the use of a continuous feeding strategy rather than a pulse feeding strategy can not only help mitigate the process constraints of the pulse-feeding strategy (resulting in higher specific and volumetric productivities) but also be used as means to broaden the range of polymer structures. Continuous feeding increased the hydroxyvalerate content by 8% relatively to that obtained from the same feedstock using pulse wise feeding. Therefore, the feeding strategy can be used to manipulate polymer composition. Furthermore, the range of PHA compositions, copolymers of P(HB-co-HV) with HV fraction ranging from 15 to 39%, obtained subsequently resulted in different polymer properties. Increasing HV content resulted in a decrease of the average molecular weight, the glass transition and melting temperatures and also in a reduction in the crystallinity degree from a semi-crystalline material to an amorphous matrix.  相似文献   

10.
自养黄杆菌合成羟基丁酸和羟基戊酸共聚体的发酵研究   总被引:14,自引:2,他引:12  
采用本实验室从土壤中分离到的一株自养黄杆菌进行了羟基丁酸和羟基戊酸共聚体〔P(HB-co-HV)〕的发酵试验。实验结果表明,该菌株是自养黄杆菌葡萄糖运输突变株,可以葡萄糖、果糖、蔗糖、麦芽糖、乙酸盐、乳酸盐和苹果酸盐作为唯一碳源,尤以葡萄糖和果糖效果最佳。硫酸铵、氯化铵和蛋白胨等不同氮源不影响其生长,却影响细胞中P(HB-co-HV)的含量和P(HB-co-HV)中HV/HB的比例。应用两阶段控制方式,经42h的补料分批发酵,细胞浓度达34.9g·L~(-1),P(HB-co-HV)浓度达25.28g·L~(-1)。细胞和P(HB-co-HV)生产速率系数分别为0.83g·L~(-1)”·h~(-1)和0.61g·L~(-1)·h~(-1)。以基质为基准的细胞得率系数(Yx/s)、产物得率系数(Yp/s)和以干细胞为基准的产物得率系数(Yp/x)分别为0.283(g/g)、0.174(g/g)和0.73(g/g)。改变培养基中碳氮源组分可将P(HB-co-HV)中HB的含量调节在24%~78%之间。  相似文献   

11.
A new isolated bacterial strain A-04 capable of producing high content of polyhydroxyalkanoates (PHAs) was morphologically and taxonomically identified based on biochemical tests and 16S rRNA gene analysis. The isolate is a member of the genus Ralstonia and close to Ralstonia eutropha. Hence, this study has led to the finding of a new and unexplored R. eutropha strain A-04 capable of producing PHAs with reasonable yield. The kinetic study of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] production by the R. eutropha strain A-04 was examined using butyric acid and γ–hydroxybutyric acid as carbon sources. Effects of substrate ratio and mole ratio of carbon to nitrogen (C/N) on kinetic parameters were investigated in shake flask fed-batch cultivation. When C/N was 200, that is, nitrogen deficient condition, the specific production rate of 3-hydroxybutyrate (3HB) showed the highest value, whereas when C/N was in the range between 4 and 20, the maximum specific production rate of 4-hydroxybutyrate (4HB) was obtained. Thus, the synthesis of 3HB was growth-limited production under nitrogen-deficient condition, whereas the synthesis of 4HB was growth-associated production under nitrogen-sufficient condition. The mole fraction of 4HB units increased proportionally as the ratio of γ–hydroxybutyric acid in the feed medium increased at any value of C/N ratio. Based on these kinetic studies, a simple strategy to improve P(3HB-co-4HB) production in shake flask fed-batch cultivation was investigated using C/N and substrate feeding ratio as manipulating variable, and was successfully proved by the experiments. The nucleotide sequence 1,378 bp reported in this study will appear in the GenBank nucleotide sequence database under accession number EF988626.  相似文献   

12.
The process for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB/V)] by bacterial fermentation and its recovery was analysed. The effects of various factors such as P(3HB/V) content, P(3HB/V) productivity, P(3HB/V) yield and 3-hydroxyvalerate (3HV) fraction in P(3HB/V) on the production cost of P(3HB/V) were examined. The increase in the 3HV yield on a carbon source did not significantly decrease the production cost when the 3HV fraction was 10 mol%, because the cost of the carbon substrate for 3HV was relatively small in terms of the total cost. However, at a 3HV fraction of 30 mol%, the 3HV yield on a carbon source had a significant effect on the total P(3HB/V) production cost. The production cost of P(3HB/V) increased linearly with the increase in the 3HV fraction in P(3HB/V). Received: 8 September 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

13.
Several important properties of poly(3-hydroxybutyric-co-3-hydroxyvaleric acids) (P(3HB-co-3HV) depend mainly on the HV unit fraction of the copolymer. Sequential and simultaneous feeding of glucose and valerate were employed to produce P(3HB-co-3HV) in a fed-batch culture of Ralstonia eutropha, and the effects of feeding models on the cell growth, 3HV unit fraction, and copolymer productivity have been investigated. The sequential feeding of glucose and then valerate resulted in a cell density of 110.2 g/L, 3HV unit fraction of 62.7 mol %, and copolymer productivity of 0.56 g/(L.h), while the latter simultaneous feeding strategy never achieved the 3HV fraction of P(3HB-co-3HV) higher than 50%. A nuclear magnetic resonance study confirmed that the production of random copolymer P(3HB-co-3HV) with high 3HV unit fraction was possible even with sequential feeding of glucose and valerate.  相似文献   

14.

Background

The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low.

Results

Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases.

Conclusions

Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.  相似文献   

15.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

16.
T. Yamane  X. Chen    S. Ueda 《Applied microbiology》1996,62(2):380-384
Paracoccus denitrificans accumulated a polyester in its cells during growth on n-pentanol. The composition of the polyester varied during the cultivation: the level of the 3-hydroxyvalerate unit in the polyester increased, and eventually a homopolymeric poly(3-hydroxyvalerate) [P(3HV)] accumulated to an amount 22 to 24% of the cell dry weight. Growth-associated polyester synthesis was considerably affected by n-pentanol when its concentration was controlled at several levels. Maximum accumulation of the polyester was obtained at 0.02% (vol/vol). Physical and mechanical characteristics of the P(3HV) were determined and compared with those of other homo- and copolyesters. The P(3HV) was dextrorotatory and had number-averaged and weight-averaged molecular masses of 128,000 and 888,000 Da, respectively, with a rate of polydispersity of 6.93. The level of tensile strength of the P(3HV) was lower, and its extension to break was higher than that of the poly(3-hydroxybutyrate) homopolyester.  相似文献   

17.
Summary The manner in which copolymer poly(HB-co-HV) production was influenced by different methods of limiting cell proliferation during the production phase was examined. Polymer production was significantly improved in fermentation strategies in which some growth was maintained, either by linear or exponential nitrogen source feeding as compared to cultures in which nitrogen supply was totally interrupted. Improved volumetric productivities were obtained in cultures fed with NH4OH and the proportion of 3HV incorporated was approximately twofold higher in these cultures. These performance improvements were due to higher specific rates of glucose and propionate consumption in cultures in which true growth capacity was maintained.  相似文献   

18.
A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fedbatch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot.An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of "glucose emergency states" (i.e., glucose accumulation or deficiency), and then appropriate emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.The improved fuzzy control system was used in the GSH production phase of the optimal operation to indirectly control the specific growth rate mu to its critical value mu(c). In the GSH production phase of the fed-batch culture, the optimal solution was to control mu to mu(c) in order to maintain a maximum specific GSH production rate. The value of mu(c) also coincided with the critical specific growth rate at which no ethanol formation occurs. Therefore, the control of mu to mu(c) could be done indirectly by maintaining a constant ethanol concentration, that is, zero net ethanol formation, through proper manipulation of the glucose feed rate. Maximum production of GSH was realized using the developed FLC; maximum production was a consequence of the substrate feeding strategy and cysteine addition, and the FLC was a simple way to realize the strategy. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHAs)是一种具有优质生物相容性的可降解生物基材料,其理化性质优越,具备替代石油基塑料的潜力.P(3HB-co-LA)是PHAs的一种,融合了聚乳酸(Polylactic acid,PLA)和聚3-轻基丁酸(poly(3-hydroxybutyrate),P...  相似文献   

20.
对Alcaligenes eutrophus进行高密度培养,研究表明在发酵过程中进行有效控制,可以较大幅度地提高3-羟基丁酸和3-羟基戊酸共聚物[P(3HB-co-3HV)]的生产强度。实验中选择使用限氮的方法积累P(3HB-co-3HV),分别采用丙酸和戊酸为3HV前体,对摇瓶种子生长状态,停氮时机对菌体生产P(3HB-co-3HV)的影响以及补酸(3HV前体)策略进行了研究,在6.6L罐中,以葡萄糖为碳源,以丙酸为3HV前体培养50h,细胞干重,PHA产量,PHA含量分别达到149.9g/L,149.9g/L,83.3%(其中3HV组分占PHA的12.4mol%),生产强度达到2.50(g.h^-1.L^-1);以戊酸为3HV前体培养45h,细胞干重,PHA产量,PHA含量分别达到160.2g/L,119.0g/L,74.2%(其中3HV组分占PHA的17.7mol%)生产强度达到2.64(g.h^-1.L^-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号