首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An osmotic lysis technique was developed to induce transient permeability in human placental microvillous membrane vesicles. The degree of vesicle opening and resealing was quantitated using the fluorescent markers, 6-carboxyfluorescein and fluorescein dextran. Compared to freeze-thaw and sonication methods, hypotonic lysis was significantly more efficient, causing greater than 90% lysis with greater than 90% subsequent resealing under optimal conditions. The transient increase in vesicle permeability permitted the unrestricted entry of macromolecules with molecular masses up to 70,000 kDa. Passive transport of water, protons, and erythritol and carrier-mediated transport of L-valine and sodium-proton exchange were unaltered by the lysis/resealing procedure. Bovine tracheal vesicles were lysed to an extent similar to placental microvillous vesicles, but rabbit renal cortical brush border and basolateral membranes were lysed to a lesser extent (approximately 60%). These results show that hypotonic lysis is a suitable method for the loading and trapping of macromolecules in isolated membrane vesicles for studies of intracellular regulation of transport.  相似文献   

2.
Rupturing fluid membrane vesicles with a steady ramp of micropipette suction produces a distribution of breakage tensions governed by the kinetic process of membrane failure. When plotted as a function of log(tension loading rate), the locations of distribution peaks define a dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along the kinetic pathway. Using tests on five types of giant phosphatidylcholine lipid vesicles over loading rates(tension/time) from 0.01-100 mN/m/s, we show that the kinetic process of membrane breakage can be modeled by a causal sequence of two thermally-activated transitions. At fast loading rates, a steep linear regime appears in each spectrum which implies that membrane failure starts with nucleation of a rare precursor defect. The slope and projected intercept of this regime are set by defect size and frequency of spontaneous formation, respectively. But at slow loading rates, each spectrum crosses over to a shallow-curved regime where rupture tension changes weakly with rate. This regime is predicted by the classical cavitation theory for opening an unstable hole in a two-dimensional film within the lifetime of the defect state. Under slow loading, membrane edge energy and the frequency scale for thermal fluctuations in hole size are the principal factors that govern the level of tension at failure. To critically test the model and obtain the parameters governing the rates of transition under stress, distributions of rupture tension were computed and matched to the measured histograms through solution of the kinetic master (Markov) equations for defect formation and annihilation or evolution to an unstable hole under a ramp of tension. As key predictors of membrane strength, the results for spontaneous frequencies of defect formation and hole edge energies were found to correlate with membrane thicknesses and elastic bending moduli, respectively.  相似文献   

3.
Cells of gut and skin frequently suffer mechanically-induced plasma membrane disruptions in vivo, and bioactive molecules, including basic fibroblast growth factor (bFGF), could enter and leave cytoplasm through these disruptions. We here provide three lines of evidence that bFGF is released with surprising efficiency through plasma membrane disruptions, resembling those known to occur in vivo, produced by scraping endothelial cells from their culturing substratum. First, 41% of the total of bFGF extractable in 1 M NaCl by freeze-thaw and sonication was released simply by scraping the endothelial cells. Second, relative to release of lactate dehydrogenase, cells wounded by scraping under conditions promoting greater than 60% cell survival released a significantly larger amount (up to twofold more) of growth promoting activity than did cells uniformly killed and irreversibly permeabilized by scraping in the cold or by freezing and thawing. Last, cells that survived membrane disruptions released, and contained, less bFGF on each subsequent wounding, consistent with release of bFGF through transient (i.e., survivable) membrane disruptions. A polyclonal antibody against bFGF completely neutralized the growth promoting activity released by scraping, confirming that bFGF is released through endothelial cell plasma membrane disruptions. Cell fractionation and immunolocalization, including a novel permeabilization technique for electron microscope immunolocalization, demonstrated a cytosolic location of bFGF. We conclude that many characteristics of bFGF--its broad spectrum of producing and target cell types, cytosolic location, efficient release through biologically and pathologically relevant plasma membrane wounds, and its release from cells that survive membrane wounds--make it a strong candidate as a "wound hormone" for rapidly initiating the cell growth required for routine maintenance of tissue integrity and/or repair after injury.  相似文献   

4.
Recent investigations have reported contradictory results on the influence of low-power laser light on wound healing. Low-power laser with a power output of 250 mW and an emitted laser light of 670 nm have been insufficiently investigated to date. The effect of a 250-mW/670-nm laser light on the healing of burning wounds in rats was investigated. Thirty rats were burned on both flanks. One wound was irradiated with 670-nm laser light (2 J/cm2), whereas the other side remained untreated. Macroscopic evaluation of the wounds was performed daily; 10, 20, and 30 days after burning, 10 rats were killed and the wounds histologically evaluated. Neither macroscopic nor histologic examination of the irradiated wound showed accelerated wound healing when compared with control wounds. In the present study, irradiation of burns with a 250-mW/670-nm laser light produced no beneficial effects on wound-healing processes.  相似文献   

5.
The transport of transmembrane proteins and associated ligands through the endosomal system is governed by a number of different protein assemblies. One such assembly is retromer, a peripheral membrane protein complex that has important roles in endosomal sorting of a variety of cargo molecules. Retromer was first shown to control the endosome-to-Golgi retrieval of lysosomal hydrolase receptors, and over the past few years, it has been found to play a similar role in the transport of many other proteins in all eukaryotes from simple amoeba to plants and mammals. Recent structural studies of the core retromer complex have revealed both unexpected similarities and intriguing differences between retromer and other regulators of membrane trafficking and are beginning to open the door to a mechanistic understanding of retromer-mediated endosomal transport.  相似文献   

6.
D N Hebert  A Carruthers 《Biochemistry》1991,30(19):4654-4658
The molecular size of purified, human erythrocyte glucose transport protein (GLUT1) solubilized in cholic acid was determined by size-exclusion chromatography (SEC) and sucrose gradient ultracentrifugation. GLUT1 purified in the presence of dithiothreitol (GLUT1 + DTT) is resolved as a complex of average Stokes' radius 5.74 nm by SEC. This complex displays D-glucose-inhibitable cytochalasin B binding and, upon reconstitution into proteoliposomes, catalyzes cytochalasin B inhibitable D-glucose transport. GLUT1 purified in the absence of dithiothreitol (GLUT1-DTT) is resolved by SEC as at least two particles of average Stokes' radii 5.74 (minor component) and 7.48 nm (major component). Solubilization of GLUT1-DTT in the presence of dithiothreitol reduces the amount of 7.48-nm complex and increases the amount of 5.74-nm complex resolved by SEC. GLUT1-DTT displays D-glucose-inhibitable cytochalasin B binding and, upon reconstitution into proteoliposomes, catalyzes cytochalasin B inhibitable D-glucose transport. Sucrose gradient ultracentrifugation of GLUT1 + DTT in cholate resolves GLUT1 into two components of 4.8 and 7.6 S. The 4.8S complex is the major component of GLUT1 + DTT. The reverse profile is observed upon sucrose gradient ultracentrifugation of GLUT1-DTT. SEC of human erythrocyte membrane proteins resolves GLUT1 as a major broad peak of average Stokes' radius 7.48 nm and a minor component of 5.74 nm. Both components are characterized by D-glucose-inhibitable cytochalasin B binding. Purified GLUT1 is associated with approximately 26 tightly bound lipid molecules per monomer of transport protein. These data suggest that purified GLUT1 exists as a mixture of homodimers and homotetramers in cholate-lipid micelles and that the presence of reductant during solubilization favors dimer formation.  相似文献   

7.
Newly synthesized MHC class II molecules are sorted to lysosomal structures where peptide loading can occur. Beyond this point in biosynthesis, no MHC class II molecules have been detected at locations other than the cell surface. We studied this step in intracellular transport by visualizing MHC class II molecules in living cells. For this purpose we stably expressed a modified HLA-DR1 beta chain with the Green Fluorescent Protein (GFP) coupled to its cytoplasmic tail (beta- GFP) in class II-expressing Mel JuSo cells. This modification of the class II beta chain does not affect assembly, intracellular distribution, and peptide loading of the MHC class II complex. Transport of the class II/ beta-GFP chimera was studied in living cells at 37 degrees C. We visualize rapid movement of acidic class II/beta- GFP containing vesicles from lysosomal compartments to the plasma membrane and show that fusion of these vesicles with the plasma membrane occurs. Furthermore, we show that this transport route does not intersect the earlier endosomal pathway.  相似文献   

8.
超声对胃蛋白酶,胰蛋白酶,过氧化氢酶作用的研究   总被引:3,自引:0,他引:3  
以胃蛋白酶,胰蛋白酶,过氧化氢酶溶液在超声处理下的酶活变化为指标研究超声对蛋白质作用的机理和影响因素。结果表明超声对蛋白质的破坏程度随着功率的升高或处理时间的延长而增加;三种酶在超声作用下酶活变化形式和程度各不同;浓度是影响超声对酶作用效果的一个重要因素,可通过调整酶溶液浓度来减少酶所受到的破坏程度。自由基清除剂甘露醇和非离子表面活性剂吐温-80可以对酶活在超声作用下起到一定的保护作用,说明自由基和超声空穴是超声破坏酶结构的重要机理,研究结果同时表明对于不同的酶,超声的破坏作用可能有不同的发挥主导作用机理。  相似文献   

9.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

10.
Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In contrast, PDGF is a more potent chemoattractant for wound macrophages and fibroblasts and may stimulate these cells to express endogenous growth factors, including TGF-beta, which, in turn, directly stimulate new collagen synthesis and sustained enhancement of wound healing over a more prolonged period of time.  相似文献   

11.
The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation.  相似文献   

12.
This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50-300 microm diameter drilled through Mylar sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one-third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150-2,000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry.  相似文献   

13.
We have measured the movement of newly synthesized phosphatidylethanolamine (PE) molecules from sites of intracellular synthesis to the plasma membrane in cultured V79 Chinese hamster fibroblasts. Plasma membrane PE was distinguished from intracellular PE by its derivatization with an amino-reactive reagent, trinitrobenzene sulfonic acid, under nonpermeating conditions. Within minutes after the addition of radiolabeled precursors of PE to the culture medium, radiolabeled PE appeared at the plasma membrane. The fraction of radiolabeled PE molecules appearing at the plasma membrane increased rapidly over a 2-h period and then increased very slowly for several days to a constant specific radioactivity. By measuring the release of radiolabeled secretory proteins, we determined that the transport of newly synthesized proteins to the cell surface occurred more slowly than the transport of PE. Preincubation of cells with either cytochalasin B, cytochalasin D, colchicine, oncobendazole, sodium azide, 2-deoxyglucose, dinitrophenol, p-trifluoromethoxyphenylhydrazone, or monensin did not block the transport of de novo synthesized PE; however, incubation of cells in culture medium at 2 degrees C effectively halted the appearance of new PE molecules at the plasma membrane. When cells which had been incubated at 2 degrees C were warmed, PE molecules from intracellular PE pools once again began to appear at the plasma membrane. These results suggest that the rapid transport of newly synthesized PE molecules to the plasma membrane occurs by a mechanism independent of that used for the transport of newly synthesized proteins.  相似文献   

14.
Plasma membrane wound repair is an important but poorly understood process. We used femtosecond pulses from a Ti-Sapphire laser to make multiphoton excitation-induced disruptions of the plasma membrane while monitoring the membrane potential and resistance. We observed two types of wounds that depolarized the plasma membrane. At threshold light levels, the membrane potential and resistance returned to prewound values within seconds; these wounds were not easily observed by light microscopy and resealed in the absence of extracellular Ca(2+). Higher light intensities create wounds that are easily visible by light microscopy and require extracellular Ca(2+) to reseal. Within a few seconds the membrane resistance is approximately 100-fold lower, while the membrane potential has depolarized from -80 to -30 mV and is now sensitive to the Cl(-) concentration but not to that of Na(+), K(+), or H(+). We suggest that the chloride sensitivity of the membrane potential, after wound resealing, is due to the fusion of chloride-permeable intracellular membranes with the plasma membrane.  相似文献   

15.
There is a strong need for new point‐of‐care systems for the detection of wound infection. Overseen infections in chronic wounds induce severe complications, such as delayed healing and high risks for the patients, while time‐consuming common gold and silver standard methods for infection assessment cannot be implemented in home care units. This study demonstrates for the first time the between correlation of lysozyme activity and silver‐standard microbiological evaluation of wounds. Significantly higher (eightfold increase; p < 0.001) lysozyme activity in infected wounds was in accordance with increasing bacterial burden of infected wound fluids. Moreover, a two‐layer membrane‐based test system was developed providing visible results on infection in a short time (30 min) while avoiding any intermediate steps such as centrifugation. In the first layer of the system, a size exclusion membrane (1.2–8 μm cut‐off) retained labeled peptidoglycane while allowing only smaller fragments resulting from lysozyme hydrolysis to pass through. These fragments were then captured in a second layer, an anion‐exchanging diethylaminoethyl cellulose membrane, resulting in clearly visible color changes. Colorimetric measurements demonstrated significant differences (p < 0.001) and sixfold higher delta E values between infected and noninfected wound fluids. This system allows a quick and straightforward determination of the status of a wound. The colorimetric readout indicates the increased lysozyme activity in infected wound fluid.  相似文献   

16.
Cambial injury has been reported to alter wood structure in broad-leaved trees. However, the duration and extension of associated anatomical changes have rarely been analysed thoroughly. A total of 18 young European ash (Fraxinus excelsior L.) trees injured on the stem by a spring flood were sampled with the aim of comparing earlywood vessels and rays formed prior to and after the scarring event. Anatomical and hydraulic parameters were measured in five successive rings over one-quarter of the stem circumference. The results demonstrate that mechanical damage induces a decrease in vessel lumen size (up to 77%) and an increase in vessel number (up to 475%) and ray number (up to 115%). The presence of more earlywood vessels and rays was observed over at least three years after stem scarring. By contrast, abnormally narrow earlywood vessels mainly developed in the first ring formed after the event, increasing the thickness-to-span ratio of vessels by 94% and reducing both xylem relative conductivity and the index for xylem vulnerability to cavitation by 54% and 32%, respectively. These vessels accumulated in radial groups in a 30° sector immediately adjacent to the wound, raising the vessel grouping index by 28%. The wound-induced anatomical changes in wood structure express the functional need of trees to improve xylem hydraulic safety and mechanical strength at the expense of water transport. Xylem hydraulic efficiency was restored in one year, while xylem mechanical reinforcement and resistance to cavitation and decay lasted over several years.  相似文献   

17.
Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.  相似文献   

18.
Wound treatment in a flexible transparent chamber attached to the perimeter of the wound and containing a liquid has been extensively tested in preclinical experiments in pigs and found to offer several advantages. It protects the wound; the liquid medium or saline in the chamber provides in vivo tissue culture-like conditions; and antibiotics, analgesics, and various molecules can be delivered to the wound through the chamber. The wound chamber causes no injury to the wound itself or to the surrounding intact skin. Topical delivery of, for instance, antibiotics can provide very high concentrations at the wound site and with a favorable direction of the concentration gradient. A series of 28 wounds in 20 patients were treated with a wound chamber containing saline and antibiotics. Most patients had significant comorbidity and had not responded to conservative or surgical management with débridement and delayed primary closure or skin grafts. Six wounds had foreign bodies present; four of these were joint prostheses. Seven patients were on corticosteroids for rheumatoid arthritis, lupus, or chronic obstructive pulmonary disease, and four patients had diabetes. Most patients were treated with the wound chamber in preparation for a delayed skin graft or flap procedure, but one was treated with a wound chamber until the wound healed. Twenty-five of the wounds (89 percent) healed, and five wounds (18 percent) required additional conservative management after the initial chamber treatment and grafting procedure. Of the three wounds that did not heal, one healed after additional chamber treatment, one had a skin graft that did not take, and one required reamputation at a higher level. Antibiotic delivery was less than one intravenous dose daily, which avoided the potential for systemic absorption to toxic levels. Antibiotics such as vancomycin and gentamicin could be used in concentrations of up to 10,000 times the minimal inhibitory concentration. Forty-eight hours after application, 20 percent or more of the original antibiotic concentration was present in the wound chamber fluid. In conclusion, the wound chamber provides a safe, powerful tool in the treatment of difficult infected wounds.  相似文献   

19.
We have developed a novel method for introducing exogenous macromolecules from solution into the cytoplasm of living amoebae of the cellular slime mold Dictyostelium discoideum and have used it to measure the cytoplasmic pH of these cells. Amoebae (strain NC-4) were loaded with fluorescein-labelled dextran by sonication in a solution containing 17 mM phosphate buffer, 1 mM CaCl2, and 10 mg/ml of fluorescein-labelled dextran, pH 6.1. The recovery of living cells was approximately 40% after sonication and washing. A significant fraction (10%) of the recovered cells were loaded and contained 10(5) to 10(7) molecules of fluorescein-labelled dextran per cell as assessed by flow cytometry. The cells loaded by sonication appeared both viable and healthy, since they exhibited normal morphology and locomotion, could differentiate to form mature fruiting bodies, could chemotax in a gradient of extracellular cAMP, and could endocytose latex microspheres. The pH of single cells was estimated by using flow cytometry to measure the fluorescence ratio (fluorescein/rhodamine) in cells loaded with a mixture of the two fluorochrome-labelled dextrans. The fluorescence ratios were calibrated in situ with the flow cytometer after treatment of the cells with either weak acid or weak base to clamp the internal pH at known values. The intracellular pH measured in cells loaded with dextran in a simple salt solution was 5.9. The intracellular pH measured in cells loaded with dextran in the same solution supplemented with amino acids and glucose was 6.7. The novel sonication loading technique described may have general utility for loading diverse types of macromolecules into suspensions of living cells.  相似文献   

20.
Kinesin-1 is one of the motor proteins that drive intracellular transport in eukaryotes. This motor makes hundreds of 8-nm steps along a microtubule before releasing. Kinesin-1 can move at velocities of up to approximately 800 nm/s, which means that one turnover on average takes 10 ms. Important details, however, concerning the coordination between the two motor domains have not been determined due to limitations of the techniques used. In this study, we present an approach that allows the observation of fluorescence intensity changes on individual kinesins with a time resolution far better than the duration of a single step. In our approach, the laser focus of a confocal fluorescence microscope is pointed at a microtubule and the photons emitted by fluorescently labeled kinesin motors walking through the spot are detected with submicrosecond accuracy. We show that the autocorrelation of a fluorescence time trace of an individual kinesin motor contains information at time lags down to 0.1 ms. The quality and time resolution of the autocorrelation is primarily determined by the amount of signal photons used. By adding the autocorrelations of several tens of kinesins, fluorescence intensity changes can be observed at a timescale below 100 micros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号