首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported the structures of the native holo and substrate-bound forms of ll-diaminopimelate aminotransferase from Arabidopsis thaliana (AtDAP-AT). Here, we report the crystal and molecular structures of the ll-diaminopimelate aminotransferase from Chlamydia trachomatis (CtDAP-AT) in the apo-form and the pyridoxal-5′-phosphate-bound form. The molecular structure of CtDAP-AT shows that its overall fold is essentially identical with that of AtDAP-AT except that CtDAP-AT adopts an “open” conformation as opposed to the “closed” conformation of AtDAP-AT. Although AtDAP-AT and CtDAP-AT are approximately 40% identical in their primary sequence, they have major differences in their substrate specificities; AtDAP-AT is highly specific for LL-DAP, whereas CtDAP-AT accepts a wider range of substrates. Since all of the residues involved in substrate recognition are highly conserved between AtDAP-AT and CtDAP-AT, we propose that differences in flexibility of the loops lining the active-site region between the two enzymes likely account for the differences in substrate specificity.  相似文献   

2.

Background

Eukaryotic translation elongation factor eEF1A directs the correct aminoacyl-tRNA to ribosomal A-site. In addition, eEF1A is involved in carcinogenesis and apoptosis and can interact with large number of non-translational ligands. There are two isoforms of eEF1A, which are 98% similar. Despite the strong similarity, the isoforms differ in some properties. Importantly, the appearance of eEF1A2 in tissues in which the variant is not normally expressed can be coupled to cancer development. We reasoned that the background for the functional difference of eEF1A1 and eEF1A2 might lie in changes of dynamics of the isoforms.

Results

It has been determined by multiple MD simulation that eEF1A1 shows increased reciprocal flexibility of structural domains I and II and less average distance between the domains, while increased non-correlated diffusive atom motions within protein domains characterize eEF1A2. The divergence in the dynamic properties of eEF1A1 and eEF1A2 is caused by interactions of amino acid residues that differ between the two variants with neighboring residues and water environment. The main correlated motion of both protein isoforms is the change in proximity of domains I and II which can lead to disappearance of the gap between the domains and transition of the protein into a "closed" conformation. Such a transition is reversible and the protein can adopt an "open" conformation again. This finding is in line with our earlier experimental observation that the transition between "open" and "closed" conformations of eEF1A could be essential for binding of tRNA and/or other biological ligands. The putative calmodulin-binding region Asn311-Gly327 is less flexible in eEF1A1 implying its increased affinity for calmodulin. The ability of eEF1A1 rather than eEF1A2 to interact with Ca2+/calmodulin is shown experimentally in an ELISA-based test.

Conclusion

We have found that reversible transitions between "open" and "close" conformations of eEF1A provide a molecular background for the earlier observation that the eEF1A molecule is able to change the shape upon interaction with tRNA. The ability of eEF1A1 rather than eEF1A2 to interact with calmodulin is predicted by MD analysis and showed experimentally. The differential ability of the eEF1A isoforms to interact with signaling molecules discovered in this study could be associated with cancer-related properties of eEF1A2.  相似文献   

3.
When bound to ADP, ATP-dependent protease FtsH subunits adopt either an “open” or “closed” conformation. In the open state, the protease catalytic site is located in a narrow space covered by a lid-like helix. This space disappears in the closed form because the lid helix bends at Gly448. Here, we replaced Gly448 with various residues that stabilize helices. Most mutants retained low ATPase activity and bound to the substrate protein, but lost protease activity. However, a mutant proline substitution lost both activities. Our study shows that the conformational transition of the lid helix is essential for the function of FtsH.

Structured summary of protein interactions

FtsH and FtsHbind by molecular sieving (View Interaction)  相似文献   

4.
The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either “open” or “closed” based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency.  相似文献   

5.
Mallik B  Lambris JD  Morikis D 《Proteins》2003,53(1):130-141
Compstatin is a 13-residue cyclic peptide that has the potential to become a therapeutic agent against unregulated complement activation. In our effort to understand the structural and dynamic characteristics of compstatin that form the basis for rational and combinatorial optimization of structure and activity, we performed 1-ns molecular dynamics (MD) simulations. We used as input in the MD simulations the ensemble of 21 lowest energy NMR structures, the average minimized structure, and a global optimization structure. At the end of the MD simulations we identified five conformations, with populations ranging between 9% and 44%. These conformations are as follows: 1) coil with alphaR-alphaR beta-turn, as was the conformation of the initial ensemble of NMR structures; 2) beta-hairpin with epsilon-alphaR beta-turn; 3) beta-hairpin with alphaR-alphaR beta-turn; 4) beta-hairpin with alphaR-beta beta-turn; and 5) alpha-helical. Conformational switch was possible with small amplitude backbone motions of the order of 0.1-0.4 A and free energy barrier crossing of 2-11 kcal/mol. All of the 21 MD structures corresponding to the NMR ensemble possessed a beta-turn, with 14 structures retaining the alphaR-alphaR beta-turn type, but the average minimized structure and the global optimization structures were converted to alpha-helical conformations. Overall, the MD simulations have aided to gain insight into the conformational space sampled by compstatin and have provided a measure of conformational interconversion. The calculated conformers will be useful as structural and possibly dynamic templates for optimization in the design of compstatin using structure-activity relations (SAR) or dynamics-activity relations (DAR).  相似文献   

6.
Leukocyte-type core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT-L) is an inverting, metal-ion-independent glycosyltransferase that catalyzes the formation of mucin-type core 2 O-glycans. C2GnT-L belongs to the GT-A fold, yet it lacks the metal ion binding DXD motif characteristic of other nucleoside disphosphate GT-A fold glycosyltransferases. To shed light on the basis for its metal ion independence, we have solved the X-ray crystal structure (2.3 Å resolution) of a mutant form of C2GnT-L (C217S) in complex with the nucleotide sugar product UDP and, using site-directed mutagenesis, examined the roles of R378 and K401 in both substrate binding and catalysis. The structure shows that C2GnT-L exists in an “open” conformation and a “closed” conformation and that, in the latter, R378 and K401 interact with the β-phosphate moiety of the bound UDP. The two conformations are likely to be important in catalysis, but the conformational changes that lead to their interconversion do not resemble the nucleotide-sugar-mediated loop ordering observed in other GT-A glycosyltransferases. R378 and K401 were found to be important in substrate binding and/or catalysis, an observation consistent with the suggestion that they serve the same role played by metal ion in all of the other GT-A glycosyltransferases studied to date. Notably, R378 and K401 appear to function in a manner similar to that of the arginine and lysine residues contained in the RX4-5K motif found in the retaining GT-B glycosyltransferases.  相似文献   

7.
The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe2?-O? + (?)NO → trHbN-Fe3?-OH? + NO??) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by (?)NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates (?)NO and O? to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.  相似文献   

8.
The emergence of drug-resistant mutants of HIV-1 is a tragic effect associated with conventional long-treatment therapies against acquired immunodeficiency syndrome. These mutations frequently involve the aspartic protease encoded by the virus; knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more effective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site. These mutations modify the affinity for both substrate and ligands, thus conferring resistance. In this work, molecular dynamics simulations were performed on a native wild type HIV-1 protease and on the drug-resistant M46I/G51D double mutant. The simulation was carried out for a time of 3.5 ns using the GROMOS96 force field, with implementation of the SPC216 explicit solvation model. The results show that the flaps may exist in an ensemble of conformations between a “closed” and an “open” conformation. The behaviour of the flap tips during simulations is different between the native enzyme and the mutant. The mutation pattern leads to stabilization of the flaps in a semi-open configuration.  相似文献   

9.
Three dimensional structures of sialyl Lewis(x) (SLe(x)) in aqueous solution and bound to selectinE are described based on an exhaustive conformational analysis and several long molecular dynamics simulations using different glycosidic regions as starting conformations. It appears from this study that when the oligosaccharide is free in solution the NeuNAcalpha(2-3)Gal segment favors glycosidic conformation in three different regions in the (Phi,Psi) plane with propensity of populations in the ratio 1:8:1. Each one of these structures is characteristically stabilized by specific hydrogen bonding interaction between NeuNAc and Gal. On the other hand, the Gal-GlcNAc-Fuc segment can exist in four different conformational states. Based on the topology of SLe(x) we are able to predict that out of all the allowed conformations in solution only two of these structures possess a geometry that would fit without steric clashes into the binding location of selectinE. In both of these binding modes, segment Gal-GlcNAc-Fuc adopts a unique conformation. The only difference between the two SLe(x) conformers that can successfully bind to selectinE is given by two possible regions in glycosidic space in the fragment NeuNAcalpha(2-3)Gal. A large conformational departure from the crystallographic data is observed for two lysine residues at the binding site of selectinE. These two residues play an important role when SLe(x) binds selectinE in aqueous solution. These findings help reconcile the X-ray data, in which these residues appear to be 1 nm away from SLe(x), with recent liquid NMR data reporting couplings between these protein residues and the sugar.  相似文献   

10.
M Katahira  H Sugeta  Y Kyogoku 《Biochemistry》1990,29(31):7214-7222
The conformation of the putative bent DNA d(GGAAATTTCC)2 in solution was studied by use of 1H NMR and restrained molecular dynamics. Most of the resonances were assigned sequentially. A total of 182 interproton distance restraints were determined from two-dimensional nuclear Overhauser effect spectra with short mixing times. Torsion angle restraints for each sugar moiety were determined by qualitative analysis of a two-dimensional correlated spectrum. Restrained molecular dynamics was carried out with the interproton distances and torsion angles incorporated into the total energy function of the system in the form of effective potential terms. As initial conformations for restrained molecular dynamics, classical A-DNA and B-DNA were adopted. The root mean square deviation (rmsd) between these two conformations is 5.5 A. The conformations obtained by use of restrained molecular dynamics are very similar to each other, the rmsd being 0.8 A. On the other hand, the conformations obtained by use of molecular dynamics without experimental restraints or restrained energy minimization depended heavily on the initial conformations, and convergence to a similar conformation was not attained. The conformation obtained by use of restrained molecular dynamics exhibits a few remarkable features. The second G residue takes on the BII conformation [Fratini, A. V., Kopka, M. L., Drew, H. R., & Dickerson, R. E. (1982) J. Biol. Chem. 257, 14686-14707] rather than the standard BI conformation. There is discontinuity of the sugar puckering between the eighth T and ninth C. The minor groove of the oligo(dA) tract is rather compressed. As a result, d(GGAAATTTCC)2 is bent.  相似文献   

11.
NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.  相似文献   

12.
Abstract

Hinge-bending in T4 lysozyme has been inferred from single amino acid mutant crystalline allomorphs by Matthews and coworkers. This raises an important question: are the different conformers in the unit cell artifacts of crystal packing forces, or do they represent different solution state structures? The objective of this theoretical study is to determine whether domain motions and hinge-bending could be simulated in T4 lysozyme using molecular dynamics. An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. Molecular dynamics calculations were computed using the Discover software package (Biosym Technologies). All hydrogen atoms were modeled explicitly with the inclusion of all 152 crystallographic waters at a temperature of 300 K. The native T4 lysozyme molecular dynamics simulation demonstrated hinge-bending in the protein. Relative domain motions between the N-terminal and C-terminal domains were evident. The enzyme hinge bending sites resulted from small changes in backbone atom conformations over several residues rather than rotation about a single bound. Two hinge loci were found in the simulation. One locus comprises residues 8–14 near the C-terminal of the A helix; the other site, residues 77–83 near the C-terminal of the C helix. Comparison of several snapshot structures from the dynamics trajectory clearly illustrates domain motions between the two lysozyme lobes. Time correlated atomic motions in the protein were analyzed using a dynamical cross-correlation map. We found a high degree of correlated atomic motions in each of the domains and, to a lesser extent, anticorrelated motions between the two domains. We also found that the hairpin loop in the N-terminal lobe (residues 19–24) acted as a mobile ‘flap’ and exhibited highly correlated dynamic motions across the cleft of the active site, especially with residue 142.  相似文献   

13.
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism.  相似文献   

14.
Proteins exist as conformational ensembles composed of multiple interchanging substates separated by kinetic barriers. Interconverting conformations are often difficult to probe, owing to their sparse population and transient nature. Here, we report the identification and characterization of a subset of conformations in ubiquitin that participate in microsecond-to-millisecond motions in the amides of Ile23, Asn25, and Thr55. A novel side chain to the backbone hydrogen bond that regulates these motions has also been identified. Combining our NMR studies with the available X-ray data, we have unearthed the physical process underlying slow motions—the interconversion of a type I into a type II β-turn flip at residues Glu51 through Arg54. Interestingly, the dominant conformer of wild-type ubiquitin observed in solution near neutral pH is only represented by about 22% of the crystal structures. The conformers generated as a result of the dynamics of the hydrogen bond appear to be correlated to ligand recognition by ubiquitin.  相似文献   

15.
Molecular dynamics simulations of a 3 molal aqueous solution of d-sorbitol (also called d-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data support a more bent structure.  相似文献   

16.
The conformational dynamics of cytochrome P450 enzymes are critical to their catalytic activity. In this study, the correlated motion between residues in a 200 ns molecular dynamics trajectory of the thermophilic CYP119 was analyzed to parse out conformational relationships. Residues that are structurally related, for example residues within a helix, generally have highly correlated motion. In addition, clusters of non-adjacent residues that show correlated motion (“hot spots”) are seen in various regions, including at the base of the F and G helices that make up the most dynamic region of the enzyme. A modified k-means algorithm that clusters residues based on their correlated motion indicates that functionally related residues are in the same cluster (e.g., the catalytic threonines and the heme). Tightly coupled clusters form a solvent-exposed “shell” around the enzyme, whereas less coupling between clusters is seen in regions that are critical to ligand interactions, redox partner interactions, and catalysis. Most notably, we find that residues in the active site move independently from the rest of the enzyme, effectively insulating the catalytic machinery from other regions of the protein.  相似文献   

17.
CheY is a response regulator protein involved in bacterial chemotaxis. Much is known about its active and inactive conformations, but little is known about the mechanisms underlying long-range interactions or correlated motions. To investigate these events, molecular dynamics simulations were performed on the unphosphorylated, inactive structure from Salmonella typhimurium and the CheY-BeF(3)(-) active mimic structure (with BeF(3)(-) removed) from Escherichia coli. Simulations utilized both sequences in each conformation to discriminate sequence- and structure-specific behavior. The previously identified conformational differences between the inactive and active conformations of the strand-4-helix-4 loop, which are present in these simulations, arise from the structural, and not the sequence, differences. The simulations identify previously unreported structure-specific flexibility features in this loop and sequence-specific flexibility features in other regions of the protein. Both structure- and sequence-specific long-range interactions are observed in the active and inactive ensembles. In the inactive ensemble, two distinct mechanisms based on Thr-87 or Ile-95 rotameric forms, are observed for the previously identified g+ and g- rotamer sampling by Tyr-106. These molecular dynamics simulations have thus identified both sequence- and structure-specific differences in flexibility, long-range interactions, and rotameric form of key residues. Potential biological consequences of differential flexibility and long-range correlated motion are discussed.  相似文献   

18.
Glucosamine-6P synthase, which catalyzes glucosamine-6P synthesis from fructose-6P and glutamine, channels ammonia over 18 Å between its glutaminase and synthase active sites. The crystal structures of the full-length Escherichia coli enzyme have been determined alone, in complex with the first bound substrate, fructose-6P, in the presence of fructose-6P and a glutamine analog, and in the presence of the glucosamine-6P product. These structures represent snapshots of reaction intermediates, and their comparison sheds light on the dynamics of catalysis. Upon fructose-6P binding, the C-terminal loop and the glutaminase domains get ordered, leading to the closure of the synthase site, the opening of the sugar ring and the formation of a “closed” ammonia channel. Then, glutamine binding leads to the closure of the Q-loop to protect the glutaminase site, the activation of the catalytic residues involved in glutamine hydrolysis, the swing of the side chain of Trp74, which allows the communication between the two active sites through an “open” channel, and the rotation of the glutaminase domains relative to the synthase domains dimer. Therefore, binding of the substrates at the appropriate reaction time is responsible for the formation and opening of the ammonia channel and for the activation of the enzyme glutaminase function.  相似文献   

19.
The effects on the structural and functional properties of the Kv1.2 voltage-gated ion channel, caused by selective mutation of voltage sensor domain residues, have been investigated using classical molecular dynamics simulations. Following experiments that have identified mutations of voltage-gated ion channels involved in state-dependent omega currents, we observe for both the open and closed conformations of the Kv1.2 that specific mutations of S4 gating-charge residues destabilize the electrostatic network between helices of the voltage sensor domain, resulting in the formation of hydrophilic pathways linking the intra- and extracellular media. When such mutant channels are subject to transmembrane potentials, they conduct cations via these so-called “omega pores.” This study provides therefore further insight into the molecular mechanisms that lead to omega currents, which have been linked to certain channelopathies.  相似文献   

20.
Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein–FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a “closed” FakB1 state to an “open” state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号