首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scheffers DJ 《FEBS letters》2008,582(17):2601-2608
The min system prevents polar cell division in bacteria. Here, the biochemical characterization of the interaction of MinC and FtsZ from a Gram-positive bacterium, Bacillus subtilis, is reported. B. subtilis MinC inhibits FtsZ polymerization in a pH-dependent manner by preventing the formation of lateral associations between filaments. The inhibitory effect of MinC on FtsZ polymerization is counteracted by the presence of ZapA, a protein that promotes FtsZ filament bundling.  相似文献   

2.
FtsZ is part of a mid-cell cytokinetic structure termed the Z-ring that recruits a hierarchy of fission related proteins early in the bacterial cell cycle. The widely conserved ZapA has been shown to interact with FtsZ, to drive its polymerisation and to promote FtsZ filament bundling thereby contributing to the spatio-temporal tuning of the Z-ring. Here, we show the crystal structure of ZapA (11.6 kDa) from Pseudomonas aeruginosa at 2.8 A resolution. The electron density reveals two dimers associating via an extensive C-terminal coiled-coil protrusion to form an elongated anti-parallel tetramer. In solution, ZapA exists in a dimer-tetramer equilibrium that is strongly correlated with concentration. An increase in concentration promotes formation of the higher oligomeric state. The dimer is postulated to be the predominant physiological species although the tetramer could become significant if, as FtsZ is integrated into the Z-ring and is cross-linked, the local concentration of the dimer becomes sufficiently high. We also show that ZapA binds FtsZ with an approximate 1:1 molar stoichiometry and that this interaction provokes dramatic FtsZ polymerisation and inter-filament association as well as yielding filaments, single or bundled, more stable and resistant to collapse. Whilst in vitro dynamics of FtsZ are well characterised, its in vivo arrangement within the ultra-structural architecture of the Z-ring is yet to be determined despite being fundamental to cell division. The ZapA dimer has single 2-fold symmetry whilst the bipolar tetramer displays triple 2-fold symmetry. Given the symmetry of these ZapA oligomers and the polar nature of FtsZ filaments, the structure of ZapA carries novel implications for the inherent architecture of the Z-ring in vivo.  相似文献   

3.
FtsZ, a prokaryotic homolog of eukaryotic tubulin, is a major constituent of the bacterial Z-ring, which contracts the cell wall during cell division. Because the mechanical properties of FtsZ are unknown, its function in the maintenance and constriction of the Z-ring is not well understood. Here, quantitative rheometry shows that, at physiological concentrations, FtsZ filaments form, extremely rapidly, highly elastic networks within physiological time scales ( approximately minutes), much faster than other major dynamic cytoskeletal filaments, including microtubule, actin, and vimentin in eukaryotes. FtsZ networks display a relatively low viscosity and a high resilience against shear stresses, as well as an elasticity that depends weakly on concentration, G approximately C(0.57), a power-law dependence consistent with crosslinked flexible filaments. Calcium, whose intracellular concentration increases during bacterial division, further enhances the elasticity of FtsZ networks through filament bundling, an effect that occurs in the presence of GTP, not GDP. These studies suggest that FtsZ filaments have the toughness to provide strong mechanical support for the maintenance and circumferential constriction of the bacterial Z-ring.  相似文献   

4.
FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.  相似文献   

5.
During Escherichia coli cell division, an intracellular complex of cell division proteins known as the Z-ring assembles at midcell during early division and serves as the site of constriction. While the predominant protein in the Z-ring is the widely conserved tubulin homolog FtsZ, the actin homolog FtsA tethers the Z-ring scaffold to the cytoplasmic membrane by binding to FtsZ. While FtsZ is known to function as a dynamic, polymerized GTPase, the assembly state of its partner, FtsA, and the role of ATP are still unclear. We report that a substitution mutation in the FtsA ATP-binding site impairs ATP hydrolysis, phospholipid vesicle remodeling in vitro, and Z-ring assembly in vivo. We demonstrate by transmission electron microscopy and Förster Resonance Energy Transfer that a truncated FtsA variant, FtsA(ΔMTS) lacking a C-terminal membrane targeting sequence, self assembles into ATP-dependent filaments. These filaments coassemble with FtsZ polymers but are destabilized by unassembled FtsZ. These findings suggest a model wherein ATP binding drives FtsA polymerization and membrane remodeling at the lipid surface, and FtsA polymerization is coregulated with FtsZ polymerization. We conclude that the coordinated assembly of FtsZ and FtsA polymers may serve as a key checkpoint in division that triggers cell wall synthesis and division progression.  相似文献   

6.
At initiation of cell division, FtsZ, a tubulin-like GTPase, assembles into a so-called Z-ring structure at the site of division. The formation of Z ring is negatively regulated by EzrA, which ensures only one ring at the midcell per cell cycle. The mechanism leading to the negative regulation of Z-ring formation by EzrA has been analyzed. Our data reveal that the interaction between EzrA and FtsZ not only reduces the GTP-binding ability of FtsZ but also accelerates the rate of GTP hydrolysis, both of which are unfavorable for the polymerization of FtsZ. Moreover, the acceleration in rate of GTP hydrolysis by EzrA is attributed to stabilization of the transition state for GTP hydrolysis and reduction in the affinity of GDP for FtsZ. Clearly, EzrA is able to modify the GTP hydrolysis cycle of FtsZ. On the basis of these results, a model for how EzrA acts to negatively regulate Z-ring formation is proposed.  相似文献   

7.
Cell division is a fundamental process for both eukaryotic and prokaryotic cells. In bacteria, cell division is driven by a dynamic, ring-shaped, cytoskeletal element (the Z-ring) made up of polymers of the tubulin-like protein FtsZ. It is thought that lateral associations between FtsZ polymers are important for function of the Z-ring in vivo, and that these interactions are regulated by accessory cell division proteins such as ZipA, EzrA and ZapA. We demonstrate that the putative Escherichia coli ZapA orthologue, YgfE, exists in a dimer/tetramer equilibrium in solution, binds to FtsZ polymers, strongly promotes FtsZ polymer bundling and is a potent inhibitor of the FtsZ GTPase activity. We use linear dichroism, a technique that allows structure analysis of molecules within linear polymers, to reveal a specific conformational change in GTP bound to FtsZ polymers, upon bundling by YgfE. We show that the consequences of FtsZ polymer bundling by YgfE and divalent cations are very similar in terms of GTPase activity, bundle morphology and GTP orientation and therefore propose that this conformational change in bound GTP reveals a general mechanism of FtsZ bundling.  相似文献   

8.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   

9.
Bacterial cell division relies on the formation and contraction of the Z ring, coordinated and regulated by a dynamic protein complex called the divisome. The cell division factor ZapA interacts directly with FtsZ and thereby increases FtsZ protofilament association and Z-ring stability. Here, we investigated ZapB interaction with ZapA and its effect on Z-ring formation and FtsZ protofilament bundling. The combination of the ftsZ84 allele that encodes an FtsZ variant that polymerizes inefficiently with a zapB null mutant resulted in a synthetic defective phenotype. Overproduction of ZapA led to the formation of aberrant FtsZ helical structures and delocalization of ZapB. The N-terminal end of ZapB was essential for ZapB-ZapA interaction, and amino acid changes close to the N terminus of ZapB exhibited reduced interaction with ZapA. Sedimentation assays showed that ZapB interacts strongly with ZapA and reduces ZapA's interaction with FtsZ in vitro. The morphology of the structures formed by ZapA and ZapB together was similar to the cables formed by ZapB in the presence of CaCl(2), a known ZapB bundling agent. The in vivo and in vitro data support a model in which ZapA interacts strongly with ZapB and the ZapA-ZapB interaction is favored over ZapA-FtsZ.  相似文献   

10.
Löwe J  Amos LA 《Biological chemistry》2000,381(9-10):993-999
Bacterial cell division depends on the formation of a cytokinetic ring structure, the Z-ring. The bacterial tubulin homologue FtsZ is required for Z-ring formation. FtsZ assembles into various polymeric forms in vitro, indicating a structural role in the septum of bacteria. We have used recombinant FtsZ1 protein from M. jannaschii to produce helical tubes and sheets with high yield using the GTP analogue GMPCPP [guanylyl-(alpha,beta)-methylene-diphosphate]. The sheets appear identical to the previously reported Ca++-induced sheets of FtsZ from M. jannaschii that were shown to consist of 'thick'-filaments in which two protofilaments run in parallel. Tubes assembled either in Ca++ or in GMPCPP contain filaments whose dimensions indicate that they could be equivalent to the 'thick'-filaments in sheets. Some tubes are hollow but others are filled by additional protein density. Helical FtsZ tubes differ from eukaryotic microtubules in that the filaments curve around the filament axis with a pitch of approximately 430 A for Ca++-induced tubes or 590 - 620 A for GMPCPP. However, their assembly in vitro as well-ordered polymers over distances comparable to the inner circumference of a bacterium may indicate a role in vivo. Their size and stability make them suitable for use in motility assays.  相似文献   

11.
Assembly, bundling and stability of FtsZ protofilaments are important for the formation and functioning of the cytokinetic Z-ring during bacterial division. We found that the bundling of FtsZ protofilaments decreased strongly with increasing pH from 6.0 to 7.9, while the assembly of FtsZ monomers did not decrease considerably. In addition, the disassembly of FtsZ protofilaments was strongly suppressed at pH 6.0 as compared to the elevated pHs. The far-UV circular dichroism spectra of the native FtsZ and the tryptophan emission spectra of mutated FtsZ (Y371W) did not change by increasing pH from 6 to 7.9 indicating that the structure of FtsZ was not altered significantly. Further, the inhibition of bundling of FtsZ protofilaments predominantly, and the inhibition of assembly to a lesser extent by salt indicated that electrostatic interactions are important for the assembly and bundling of FtsZ protofilaments. These observations are supported by the results of computational docking of Escherichia coli dimer structure. The results suggest that the basic intracellular pH (7.4-7.8) of E. coli may play a role in regulating the assembly dynamics of FtsZ in the Z-ring by reducing protofilament stability and bundling in bacterial cytoplasm.  相似文献   

12.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

13.
In Escherichia coli cell division is driven by the tubulin-like GTPase, FtsZ, which forms the cytokinetic Z-ring. The Z-ring serves as a dynamic platform for the assembly of the multiprotein divisome, which catalyzes membrane cleavage to create equal daughter cells. Several proteins effect FtsZ assembly, thereby providing spatiotemporal control over cell division. One important class of FtsZ interacting/regulatory proteins is the Z-ring-associated proteins, Zaps, which typically modulate Z-ring formation by increasing lateral interactions between FtsZ protofilaments. Strikingly, these Zap proteins show no discernable sequence similarity, suggesting that they likely harbor distinct structures and mechanisms. The 19.8-kDa ZapC in particular shows no homology to any known protein. To gain insight into ZapC function, we determined its structure to 2.15 Å and performed genetic and biochemical studies. ZapC is a monomer composed of two domains, an N-terminal α/β region and a C-terminal twisted β barrel-like domain. The structure contains two pockets, one on each domain. The N-domain pocket is lined with residues previously implicated to be important for ZapC function as an FtsZ bundler. The adjacent C-domain pocket contains a hydrophobic center surrounded by conserved basic residues. Mutagenesis analyses indicate that this pocket is critical for FtsZ binding. An extensive FtsZ binding surface is consistent with the fact that, unlike many FtsZ regulators, ZapC binds the large FtsZ globular core rather than C-terminal tail, and the presence of two adjacent pockets suggests possible mechanisms for ZapC-mediated FtsZ bundling.  相似文献   

14.
Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.  相似文献   

15.
Li Z  Trimble MJ  Brun YV  Jensen GJ 《The EMBO journal》2007,26(22):4694-4708
In prokaryotes, FtsZ (the filamentous temperature sensitive protein Z) is a nearly ubiquitous GTPase that localizes in a ring at the leading edge of constricting plasma membranes during cell division. Here we report electron cryotomographic reconstructions of dividing Caulobacter crescentus cells wherein individual arc-like filaments were resolved just underneath the inner membrane at constriction sites. The filaments' position, orientation, time of appearance, and resistance to A22 all suggested that they were FtsZ. Predictable changes in the number, length, and distribution of filaments in cells where the expression levels and stability of FtsZ were altered supported that conclusion. In contrast to the thick, closed-ring-like structure suggested by fluorescence light microscopy, throughout the constriction process the Z-ring was seen here to consist of just a few short (approximately 100 nm) filaments spaced erratically near the division site. Additional densities connecting filaments to the cell wall, occasional straight segments, and abrupt kinks were also seen. An 'iterative pinching' model is proposed wherein FtsZ itself generates the force that constricts the membrane in a GTP-hydrolysis-driven cycle of polymerization, membrane attachment, conformational change, depolymerization, and nucleotide exchange.  相似文献   

16.
The earliest stage in cell division in bacteria is the assembly of a Z ring at the division site at midcell. Other division proteins are also recruited to this site to orchestrate the septation process. FtsA is a cytosolic division protein that interacts directly with FtsZ. Its function remains unknown. It is generally believed that FtsA localization to the division site occurs immediately after Z-ring formation or concomitantly with it and that FtsA is responsible for recruiting the later-assembling membrane-bound division proteins to the division site. Here, we report the development of an in vivo chemical cross-linking assay to examine the association between FtsZ and FtsA in Bacillus subtilis cells. We subsequently use this assay in a synchronous cell cycle to show that these two proteins can interact prior to Z-ring formation. We further show that in a B. subtilis strain containing an ftsA deletion, FtsZ localized at regular intervals along the filament but the majority of Z rings were abnormal. FtsA in this organism is therefore critical for the efficient formation of functional Z rings. This is the first report of abnormal Z-ring formation resulting from the loss of a single septation protein. These results suggest that in this organism, and perhaps others, FtsA ensures recruitment of the membrane-bound division proteins by ensuring correct formation of the Z ring.  相似文献   

17.
Bacterial cell division is mediated by a multi-protein machine known as the "divisome", which assembles at the site of cell division. Formation of the divisome starts with the polymerization of the tubulin-like protein FtsZ into a ring, the Z-ring. Z-ring formation is under tight control to ensure bacteria divide at the right time and place. Several proteins bind to the Z-ring to mediate its membrane association and persistence throughout the division process. A conserved stretch of amino acids at the C-terminus of FtsZ appears to be involved in many interactions with other proteins. Here, we describe a novel pull-down assay to look for binding partners of the FtsZ C-terminus, using a HaloTag affinity tag fused to the C-terminal 69 amino acids of B. subtilis FtsZ. Using lysates of Escherichia coli overexpressing several B. subtilis cell division proteins as prey we show that the FtsZ C-terminus specifically pulls down SepF, but not EzrA or MinC, and that the interaction depends on a conserved 16 amino acid stretch at the extreme C-terminus. In a reverse pull-down SepF binds to full-length FtsZ but not to a FtsZΔC16 truncate or FtsZ with a mutation of a conserved proline in the C-terminus. We show that the FtsZ C-terminus is required for the formation of tubules from FtsZ polymers by SepF rings. An alanine-scan of the conserved 16 amino acid stretch shows that many mutations affect SepF binding. Combined with the observation that SepF also interacts with the C-terminus of E. coli FtsZ, which is not an in vivo binding partner, we propose that the secondary and tertiary structure of the FtsZ C-terminus, rather than specific amino acids, are recognized by SepF.  相似文献   

18.
The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.  相似文献   

19.
Yang L  Sept D  Carlsson AE 《Biophysical journal》2006,90(12):4295-4304
The formation of filopodia-like bundles from a dendritic actin network has been observed to occur in vitro as a result of branching induced by Arp2/3 complex. We study both the energetics and dynamics of actin filament bundling in such a network to evaluate their relative importance in bundle formation processes. Our model considers two semiflexible actin filaments fixed at one end and free at the other, described using a normal-mode approximation. This model is studied by both Brownian dynamics and free-energy minimization methods. Remarkably, even short filaments can bundle at separations comparable to their lengths. In the dynamic simulations, we evaluate the time required for the filaments to interact and bind, and examine the dependence of this bundling time on the filament length, the distance between the filament bases, and the cross-linking energy. In most cases, bundling occurs in a second or less. Beyond a certain critical distance, we find that the bundling time increases very rapidly with increasing interfilament separation and/or decreasing filament length. For most of the cases we have studied, the energetics results for this critical distance are similar to those obtained from dynamics simulations run for 10 s, suggesting that beyond this timescale, energetics, rather than kinetic constraints, determine whether or not bundling occurs. Over a broad range of conditions, we find that the times required for bundling from a network are compatible with experimental observations.  相似文献   

20.
Inhibition of the Fts family of proteins causes the growth of long filamentous cells, indicating that they play some role in cell division. FtsZ polymerizes into protofilaments and assembles into the Z-ring at the future site of the septum of cell division. We analyze the rigidity of GTP-bound FtsZ protofilaments by using cryoelectron microscopy to sample their bending fluctuations. We find that the FtsZ-GTP filament rigidity is κ=4.7±1.0×10(-27) Nm(2), with a corresponding thermal persistence length of l(p)=1.15±0.25μm, much higher than previous estimates. In conjunction with other model studies, our new higher estimate for FtsZ rigidity suggests that contraction of the Z-ring may generate sufficient force to facilitate cell division. The good agreement between the measured mode amplitudes and that predicted by equipartition of energy supports our use of a simple mechanical model for FtsZ fibers. The study also provides evidence that the fibers have no intrinsic global or local curvatures, such as might be caused by partial hydrolysis of the GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号