首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonmotile cells extend and retract pseudopodia-like structures in a random manner, whereas motile cells establish a single dominant pseudopodium in the direction of movement. This is a critical step necessary for cell migration and occurs prior to cell body translocation, yet little is known about how this process is regulated. Here we show that myosin II light chain (MLC) phosphorylation at its regulatory serine 19 is elevated in growing and retracting pseudopodia. MLC phosphorylation in the extending pseudopodium was associated with strong and persistent amplification of extracellular-regulated signal kinase (ERK) and MLC kinase activity, which specifically localized to the leading pseudopodium. Interestingly, inhibition of ERK or MLC kinase activity prevented MLC phosphorylation and pseudopodia extension but not retraction. In contrast, inhibition of RhoA activity specifically decreased pseudopodia retraction but not extension. Importantly, inhibition of RhoA activity specifically blocked MLC phosphorylation associated with retracting pseudopodia. Inhibition of either ERK or RhoA signals prevents chemotaxis, indicating that both pathways contribute to the establishment of cell polarity and migration. Together, these findings demonstrate that ERK and RhoA are distinct pathways that control pseudopodia extension and retraction, respectively, through differential modulation of MLC phosphorylation and contractile processes.  相似文献   

2.
Drosophila melanogaster hemocytes are highly motile macrophage-like cells that undergo a stereotypic pattern of migration to populate the whole embryo by late embryogenesis. We demonstrate that the migratory patterns of hemocytes at the embryonic ventral midline are orchestrated by chemotactic signals from the PDGF/VEGF ligands Pvf2 and -3 and that these directed migrations occur independently of phosphoinositide 3-kinase (PI3K) signaling. In contrast, using both laser ablation and a novel wounding assay that allows localized treatment with inhibitory drugs, we show that PI3K is essential for hemocyte chemotaxis toward wounds and that Pvf signals and PDGF/VEGF receptor expression are not required for this rapid chemotactic response. Our results demonstrate that at least two separate mechanisms operate in D. melanogaster embryos to direct hemocyte migration and show that although PI3K is crucial for hemocytes to sense a chemotactic gradient from a wound, it is not required to sense the growth factor signals that coordinate their developmental migrations along the ventral midline during embryogenesis.  相似文献   

3.
The contractile ring and the cell cortex generate force to divide the cell while maintaining symmetrical shape. This requires temporal and spatial regulation of the actin cytoskeleton at these areas. We force-expressed misregulated versions of actin-binding proteins, tropomyosin and caldesmon, into cells and analyzed their effects on cell division. Cells expressing proteins that increase actomyosin ATPase, such as human tropomyosin chimera (hTM5/3), significantly speed up division, whereas cells expressing proteins that inhibit actomyosin, such as caldesmon mutants defective in Ca(2+)/calmodulin binding (CaD39-AB) and in cdk1 phosphorylation sites (CaD39-6F), divide slowly. hTM5 and hTM5/3-expressing cells lift one daughter cell off the substrate and twist. Furthermore, CaD39-AB- and CaD39-6F-expressing cells are sensitive to hypotonic swelling and show severe blebbing during division, whereas hTM5/3-expressing cells are resistant to hypotonic swelling and produce membrane bulges. These results support a model where Ca(2+)/calmodulin and cdk1 dynamically control caldesmon inhibition of tropomyosin-activated actomyosin to regulate division speed and to suppress membrane blebs.  相似文献   

4.
CCR7 is necessary to direct dendritic cells (DCs) to secondary lymphoid nodes and to elicit an adaptative immune response. Despite its importance, little is known about the molecular mechanisms used by CCR7 to direct DCs to lymph nodes. In addition to chemotaxis, CCR7 regulates the migratory speed of DCs. We investigated the intracellular pathways that regulate CCR7-dependent chemotaxis and migratory speed. We found that CCR7 induced a G(i)-dependent activation of MAPK members ERK1/2, JNK, and p38, with ERK1/2 and p38 controlling JNK. MAPK members regulated chemotaxis, but not the migratory speed, of DCs. CCR7 induced activation of PI3K/Akt; however, these enzymes did not regulate either chemotaxis or the speed of DCs. CCR7 also induced activation of the GTPase Rho, the tyrosine kinase Pyk2, and inactivation of cofilin. Pyk2 activation was independent of G(i) and Src and was dependent on Rho. Interference with Rho or Pyk2 inhibited cofilin inactivation and the migratory speed of DCs, but did not affect chemotaxis. Interference with Rho/Pyk2/cofilin inhibited DC migratory speed even in the absence of chemokines, suggesting that this module controls the speed of DCs and that CCR7, by activating its components, induces an increase in migratory speed. Therefore, CCR7 activates two independent signaling modules, one involving G(i) and a hierarchy of MAPK family members and another involving Rho/Pyk2/cofilin, which control, respectively, chemotaxis and the migratory speed of DCs. The use of independent signaling modules to control chemotaxis and speed can contribute to regulate the chemotactic effects of CCR7.  相似文献   

5.
The initial morphologic response of human monocytes to chemoattractants is a change in shape from round to a triangular "motile" configuration (polarization). At doses chemotactic in vitro, chemoattractants induced rapid (t 1/2 = 45 sec), sustained (greater than 40 min) polarization of monocytes in suspension. Extracellular Ca++ was not required for polarization induced by chemoattractants, but in the absence of Ca++ kinetics were slowed (t 1/2 = 6.5 min). Phenylephrine, carbamycholine, serotonin, and ascorbate also caused rapid polarization of monocytes. Unlike chemoattractants, polarization by the pharmacologic agents was unsustained (less than 15 min), absolutely required extracellular Ca++, and affected about 50% of the cells responsive to chemoattractants. Based on relative sensitivities to alpha 1- and alpha 2-adrenergic agonists and antagonists, polarization caused by adrenergic agents was mediated by alpha 2-receptors. Muscarinic and alpha 2-adrenergic agonists, serotonin, and ascorbate enhanced the rate and number of monocytes polarizing to suboptimal doses of chemoattractants. Thus, the initial morphologic changes induced by chemoattractants appear to utilize an activation pathway shared with a variety of agents that enhance cGMP levels and inhibit adenylate cyclase. In contrast, theophylline, histamine, and isoproterenol, all agents that activate adenylate cyclase and elevate cAMP levels, inhibited monocyte polarization to chemoattractants. As in PMN, pharmacologic agents that increase cAMP levels inhibited monocyte chemotaxis in vitro, whereas those that inhibit adenylate cyclase and increase cGMP enhanced monocyte chemotactic responses. Thus, the initial morphologic response of monocytes to chemoattractants as well as the processes required for sustained directional motility are modulated by cyclic nucleotides.  相似文献   

6.
Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.  相似文献   

7.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.  相似文献   

8.
The extracellular matrix fibrils of Myxococcus xanthus are essential for the social lifestyle of this unusual bacterium. These fibrils form networks linking or encasing cells and are tightly correlated with cellular cohesion, development, and social (S) gliding motility. Previous studies identified a set of bacterial chemotaxis homologs encoded by the dif locus. It was determined that difA, difC, and difE, encoding respective homologs of a methyl-accepting chemotaxis protein, CheW, and CheA, are required for fibril production and therefore S motility and development. Here we report the studies of three additional genes residing at the dif locus, difB, difD, and difG. difD and difG encode homologs of chemotaxis proteins CheY and CheC, respectively. difB encodes a positively charged protein with limited homology at its N terminus to conserved bacterial proteins with unknown functions. Unlike the previously characterized dif genes, none of these three newly studied dif genes are essential for fibril production, S motility, or development. The difB mutant showed no obvious defects in any of the processes examined. In contrast, the difD and the difG mutants were observed to overproduce fibril polysaccharides in comparison with production by the wild type. The observation that DifD and DifG negatively regulate fibril polysaccharide production strengthens our hypothesis that the M. xanthus dif genes define a chemotaxis-like signal transduction pathway which regulates fibril biogenesis. To our knowledge, this is the first report of functional studies of a CheC homolog in proteobacteria. In addition, during this study, we slightly modified previously developed assays to easily quantify fibril polysaccharide production in M. xanthus.  相似文献   

9.
10.
WASP family proteins are key players for connecting multiple signaling pathways to F-actin polymerization. To dissect the highly integrated signaling pathways controlling WASP activity, we identified a Rac protein that binds to the GTPase binding domain of WASP. Using two-hybrid and FRET-based functional assays, we identified RacC as a major regulator of WASP. RacC stimulates F-actin assembly in cell-free systems in a WASP-dependent manner. A FRET-based microscopy approach showed local activation of RacC at the leading edge of chemotaxing cells. Cells overexpressing RacC exhibit a significant increase in the level of F-actin polymerization upon cAMP stimulation, which can be blocked by a phosphatidylinositol (PI) 3-kinase inhibitor. Membrane translocation of PI 3-kinase and PI 3,4,5-trisphosphate reporter is absent in racC null cells. Cells overexpressing dominant negative RacC mutants and racC null cells move at a significantly slower speed and show a poor directionality during chemotaxis. Our results suggest that RacC plays an important role in PI 3-kinase activation and WASP activation for dynamic regulation of F-actin assembly during Dictyostelium chemotaxis.  相似文献   

11.
12.
Movement and chemotaxis are fundamental processes of cells and tissues and are based on the dynamics of the cytoskeleton. The cellular slime mold Dictyostelium discoideum is an excellent model system with which to study the molecular components and the key reactions that are required for a coordinated locomotion of single cells or a cell mass during development. The D. discoideum cytoskeleton relies mainly on the equilibrium between monomeric and filamentous actin and, like other nonmuscle cells, contains a large number of actin-binding proteins that either decrease or increase the rigidity of the microfilament system. The proteins themselves are regulated by phosphorylation, Ca2+, phospholipids, and/or pH and thus are targets for the intracellular changes that occur upon stimulation of a cell with chemoattractant. In a synopsis of the data published during the past years, the properties of numerous cytoskeletal components and the biochemical reactions of the signal transduction chain are combined here in a schematic model that attempts to explain how the directed movement of a cell could be coordinated at the molecular level.  相似文献   

13.
The attraction of fern spermatozoids by secretions from the female reproductive structures, and by salts of malic acid, has long been known as a classic example of precise chemotactic orientation by motile cells. Spermatozoids of the bracken fern are attracted by the partially ionized form of malic acid, bimalate ion, and also by calcium ions. Both calcium and bimalate ions must be present for chemotactic response and for response to voltage gradients, Spermatozoids swimming up a bimalate concentration gradient swim in helical paths of abnormally small radius; if they accidentally swim down the concentration gradient the radii of their path helices become abnormally large. These observations suggest that changes in the direction of flagellar beating in response to the rate of change of bimalate ion concentration with time may be the basis for chemotactic orientation. A “coupled diffusion” hypothesis for chemo-reception is presented, which postulates a membrane carrier which can only circulate freely in the membrane if it binds both bimalate and calcium ions. This hypothesis could explain time-differentiation of the stimulus, the coupling of a specific stimulus — bimalate ions — to a general mediator of intracellular response — calcium ions — and the quantitative relationship between response of the spermatozoids and the chemical potential of “calcium bimalate.”  相似文献   

14.
Highlighting the role of Ras and Rap during Dictyostelium chemotaxis   总被引:1,自引:0,他引:1  
Chemotaxis, the directional movement towards a chemical compound, is an essential property of many cells and has been linked to the development and progression of many diseases. Eukaryotic chemotaxis is a complex process involving gradient sensing, cell polarity, remodelling of the cytoskeleton and signal relay. Recent studies in the model organism Dictyostelium discoideum have shown that chemotaxis does not depend on a single molecular mechanism, but rather depends on several interconnecting pathways. Surprisingly, small G-proteins appear to play essential roles in all these pathways. This review will summarize the role of small G-proteins in Dictyostelium, particularly highlighting the function of the Ras subfamily in chemotaxis.  相似文献   

15.
16.
17.
We present a 'random ray' model to describe Yes/No reaction times (RTs) and errors in perceptual experiments. The ray model is analogous to a random walk, but it is computationally simpler, requiring only elementary geometry. Ray parameters control the drift rates to the Yes and No decision boundaries, bias, and a termination or 'time-out' rule. Rays are normally distributed, but predicted RT distributions are skewed by projection onto the boundaries. Model parameters can be estimated directly from the 16th, 50th, and 84th percentiles of the RT distributions on hit, correct rejection, false alarm, and miss trials, if the data satisfy three easily testable constraints. Examples are given from visual search and object recognition.  相似文献   

18.
Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.  相似文献   

19.
Actin polymerization and pseudopod extension during amoeboid chemotaxis   总被引:13,自引:0,他引:13  
Amoebae of the cellular slime mold Dictyostelium discoideum are an excellent model system for the study of amoeboid chemotaxis. These cells can be studied as a homogeneous population whose response to chemotactic stimulation is sufficiently synchronous to permit the correlation of the changes in cell shape and biochemical events during chemotaxis. Having demonstrated this synchrony of response, we show that actin polymerization occurs in two stages during stimulation with chemoattractants. The assembly of F-actin that peaks between 40 and 60 sec after the onset of stimulation is temporally correlated with the growth of new pseudopods. F-actin, which is assembled by 60 sec after stimulation begins, is localized in the new pseudopods that are extended at this time. Both stages of actin polymerization during chemotactic stimulation involve polymerization at the barbed ends of actin filaments based on the cytochalasin sensitivity of this response. We present a hypothesis in which actin polymerization is one of the major driving forces for pseudopod extension during chemotaxis. The predictions of this model, that localized regulation of actin nucleation activity and actin filament cross-linking must occur, are discussed in the context of current models for signal transduction and of recent information regarding the types of actin-binding proteins that are present in the cell cortex.  相似文献   

20.
Distribution of membrane glycoproteins was studied in chemotactic monocytes using ferritin-conjugated lectins. The cells became polarized forming a pseudopodia at a leading head. Membrane glycoproteins were redistributed at the head. This phenomenon was not observed in chemokinetic or non-chemotactic cells suggesting that membrane glycoproteins may have a role in recognition of the chemoattractant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号