首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.  相似文献   

2.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.  相似文献   

3.
4.
Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt.  相似文献   

5.
Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model) simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.  相似文献   

6.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

7.
It is well accepted that neo-vascular formation can be divided into three main stages (which may be overlapping): (1) changes within the existing vessel, (2) formation of a new channel, (3) maturation of the new vessel. In this paper we present a new approach to angiogenesis, based on the theory of reinforced random walks, coupled with a Michaelis-Menten type mechanism which views the endothelial cell receptors as the catalyst for transforming angiogenic factor into proteolytic enzyme in order to model the first stage. In this model, a single layer of endothelial cells is separated by a vascular wall from an extracellular tissue matrix. A coupled system of ordinary and partial differential equations is derived which, in the presence of an angiogenic agent, predicts the aggregation of the endothelial cells and the collapse of the vascular lamina, opening a passage into the extracellular matrix. We refer to this as the onset of vascular sprouting. Some biological evidence for the correctness of our model is indicated by the formation of teats in utero. Further evidence for the correctness of the model is given by its prediction that endothelial cells will line the nascent capillary at the onset of capillary angiogenesis. Received: 27 May 1999 / Revised version: 28 December 1999 / Published online: 16 February 2001  相似文献   

8.
Regulation of angiogenesis by extracellular matrix   总被引:23,自引:0,他引:23  
During angiogenesis, endothelial cell growth, migration, and tube formation are regulated by pro- and anti-angiogenic factors, matrix-degrading proteases, and cell-extracellular matrix interactions. Temporal and spatial regulation of extracellular matrix remodeling events allows for local changes in net matrix deposition or degradation, which in turn contributes to control of cell growth, migration, and differentiation during different stages of angiogenesis. Remodeling of the extracellular matrix can have either pro- or anti-angiogenic effects. Extracellular matrix remodeling by proteases promotes cell migration, a critical event in the formation of new vessels. Matrix-bound growth factors released by proteases and/or by angiogenic factors promote angiogenesis by enhancing endothelial migration and growth. Extracellular matrix molecules, such as thrombospondin-1 and -2, and proteolytic fragments of matrix molecules, such as endostatin, can exert anti-angiogenic effects by inhibiting endothelial cell proliferation, migration and tube formation. In contrast, other matrix molecules promote endothelial cell growth and morphogenesis, and/or stabilize nascent blood vessels. Hence, extracellular matrix molecules and extracellular matrix remodelling events play a key role in regulating angiogenesis.  相似文献   

9.
Inhibition of angiogenesis could be a treatment strategy for diseases such as cancer, rheumatoid arthritis, and diabetic retinopathy. PP2 is a pharmacological inhibitor of Src family kinases and was found to inhibit FGF-2 induced angiogenesis in vivo. Experiments in vitro showed that PP2 inhibited invasive growth and sprouting of both endothelial and vascular smooth muscle cells into a fibrin matrix. PP2 inhibited the formation of lamellopodia and expression of kinase inactive c-Src reduced phosphorylation of cortactin and paxillin, suggesting a model in which Src kinases are involved in organization of the actin cytoskeleton. Consequently, endothelial cells expressing kinase inactive c-Src failed to spread and form cord-like structures on a collagen matrix. These data suggest that pharmacological inactivation of Src family kinases inhibits FGF-2 stimulated angiogenesis by interference with organization of the actin cytoskeleton in both endothelial and vascular smooth muscle cells, which affects cell migration.  相似文献   

10.
Stimulation of angiogenesis by Ras proteins   总被引:12,自引:0,他引:12  
  相似文献   

11.
Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro‐ or microvasculature) play a role in the formation of microvessel‐like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor‐β1, and interleukin‐8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibroblasts and human ECs stimulate collagen synthesis and growth factors production by fibroblasts that ultimately affect the formation and distribution of microvessel‐like structures in cell cultures. In this study, areas with activated fibroblasts and high alkaline phosphatase (ALP) activity were also observed in cocultures. Molecular docking assays revealed that ALP has two binding positions for collagen, suggesting its impact in collagen proteins’ aggregation, cell migration, and microvessel assembly. These findings indicate that bioinformatics and coculture systems are complementary tools for investigating the participation of proteins, like collagen and ALP in angiogenesis.  相似文献   

12.
Endothelial cells respond to hypoxic changes with resultant accumulation of several metabolites and switch over to angiogenic phenotype. Although certain intermediates of glycolytic and oxidative metabolic pathways have been known to affect angiogenesis, the effect of citrate, which accumulates in certain tumors, on angiogenesis is not known. Therefore, the effect of citrate on angiogenesis was studied using different model systems. Increased vascularization in chorioallantoic membrane assay, increased endothelial sprouting in rat aortic rings, and increased expression of CD31, E-selectin in endothelial cells suggested a possible proangiogenic effect of citrate. Upregulation of angiogenic factors such as vascular endothelial growth factor and fibroblast growth factor suggested that the effect of citrate involves modulation of expression of angiogenic growth factors. LY 294002, an inhibitor of PI3K–Akt pathway, and wortmannin, an inhibitor of Akt pathway, reversed the effect of citrate in human umbilical vein endothelial cells. Citrate induced significant upregulation and activation of Akt in endothelial cells. Rapamycin, an inhibitor of mTOR, also reversed the effect of citrate in human umbilical vein endothelial cells and sprouting of aortic rings suggesting that the angiogenic effect of citrate involves activation of PI3K–Akt–mTOR pathway.  相似文献   

13.
14.
Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.  相似文献   

15.
Angiogenesis and lymphangiogenesis are highly complex morphogenetic processes, central to many physiological and pathological conditions, including development, cancer metastasis, inflammation and wound healing. While it is described that extracellular matrix (ECM) fibers are involved in the spatiotemporal regulation of angiogenesis, current angiogenesis assays are not specifically designed to dissect and quantify the underlying molecular mechanisms of how the fibrillar nature of ECM regulates vessel sprouting. Even less is known about the role of the fibrillar ECM during the early stages of lymphangiogenesis. To address such questions, we introduced here an in vitro (lymph)angiogenesis assay, where we used microbeads coated with endothelial cells as simple sprouting sources and deposited them on single Fn fibers used as substrates to mimic fibrillar ECM. The fibers were deposited on a transparent substrate, suitable for live microscopic observation of the ensuing cell outgrowth events at the single cell level. Our proof-of-concept studies revealed that fibrillar Fn, compared to Fn-coated surfaces, provides far stronger sprouting and guidance cues to endothelial cells, independent of the tested mechanical strains of the Fn fibers. Additionally, we found that VEGF-A, but not VEGF-C, stimulates the collective outgrowth of lymphatic endothelial cells (LEC), while the collective outgrowth of blood vascular endothelial cells (HUVEC) was prominent even in the absence of these angiogenic factors. In addition to the findings presented here, the modularity of our assay allows for the use of different ECM or synthetic fibers as substrates, as well as of other cell types, thus expanding the range of applications in vascular biology and beyond.  相似文献   

16.
"Sprouting" vascular endothelial cells were used as an in vitro model system to study the progressive morphologic and biosynthetic changes associated with the formation of tubular structures. In vitro, sprouting endothelial cells formed spontaneously without the addition of any exogenous factors from cultures of cloned endothelium exhibiting a polygonal/cobblestone phenotype. These phenotypically variant endothelial cells differentiated to form associated cell networks or nodules which gradually reorganized into tubular structures. Concomitant with these morphologic changes, the biosynthesis of extracellular matrix proteins was modulated, as determined by Northern blot analysis, metabolic labeling, and immunocytochemistry. The initial sprouting phase was characterized by the induction of type I collagen synthesis and the appearance of fibronectin containing the ED-A domain, in comparison to their absence in cloned cultures displaying a stable polygonal/cobblestone phenotype. The organizational stage, where the sprouting endothelial cells assembled into tubular structures, was additionally characterized by the expression of type IV collagen. These studies demonstrate that the progression from polygonal/cobblestone to sprouting cultures, and subsequent tubular organization, involves major alterations in extracellular matrix protein expression. This developmental phenomenon, although not completely analogous to blood vessel formation in vivo, nevertheless may be helpful in understanding the role of matrix macromolecules in the angiogenic process.  相似文献   

17.
18.
Coordinated production and remodeling of the extracellular matrix is essential during development. It is of particular importance for skeletogenesis, as the ability of cartilage and bone to provide structural support is determined by the composition and organization of the extracellular matrix. Connective tissue growth factor (CTGF, CCN2) is a secreted protein containing several domains that mediate interactions with growth factors, integrins and extracellular matrix components. A role for CTGF in extracellular matrix production is suggested by its ability to mediate collagen deposition during wound healing. CTGF also induces neovascularization in vitro, suggesting a role in angiogenesis in vivo. To test whether CTGF is required for extracellular matrix remodeling and/or angiogenesis during development, we examined the pattern of Ctgf expression and generated Ctgf-deficient mice. Ctgf is expressed in a variety of tissues in midgestation embryos, with highest levels in vascular tissues and maturing chondrocytes. We confirmed that CTGF is a crucial regulator of cartilage extracellular matrix remodeling by generating Ctgf(-/-) mice. Ctgf deficiency leads to skeletal dysmorphisms as a result of impaired chondrocyte proliferation and extracellular matrix composition within the hypertrophic zone. Decreased expression of specific extracellular matrix components and matrix metalloproteinases suggests that matrix remodeling within the hypertrophic zones in Ctgf mutants is defective. The mutant phenotype also revealed a role for Ctgf in growth plate angiogenesis. Hypertrophic zones of Ctgf mutant growth plates are expanded, and endochondral ossification is impaired. These defects are linked to decreased expression of vascular endothelial growth factor (VEGF) in the hypertrophic zones of Ctgf mutants. These results demonstrate that CTGF is important for cell proliferation and matrix remodeling during chondrogenesis, and is a key regulator coupling extracellular matrix remodeling to angiogenesis at the growth plate.  相似文献   

19.
Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-beta on the release of connective tissue growth factor and vascular endothelial growth factor from human airway smooth muscle cells derived from asthmatic and nonasthmatic patients. In addition we studied the immunohistochemical localization of these cytokines in the extracellular matrix after stimulating bronchial rings with transforming growth factor-beta. Connective tissue growth factor and vascular endothelial growth factor were released from both cell types and colocalized in the surrounding extracellular matrix. Prostaglandin E2 inhibited the increase in connective tissue growth factor mRNA but augmented the release of vascular endothelial growth factor. Matrix metalloproteinase-2 decreased the amount of connective tissue growth factor and vascular endothelial growth factor, but not fibronectin deposited in the extracellular matrix. This report provides the first evidence that connective tissue growth factor may anchor vascular endothelial growth factor to the extracellular matrix and that this deposition is decreased by matrix metalloproteinase-2 and prostaglandin E2. This relationship has the potential to contribute to the changes that constitute airway remodeling, therefore providing a novel focus for therapeutic intervention in asthma.  相似文献   

20.
Beilmann M  Birk G  Lenter MC 《Cytokine》2004,26(4):178-185
Therapeutic angiogenesis aims to induce blood vessel growth in acute or chronic ischemic tissues and has gained tremendous interest over the last years. To study factors and combinations thereof that potentially induce or modify angiogenesis and to evaluate their therapeutic potential, various in vitro assays have been developed. Although endothelial cells have attracted most attention in these assays, they alone cannot complete vessel maturation since extracellular matrix (ECM) components and mesenchymal cells also play an important role in vascular development. To address this complexity we focussed on a human co-culture angiogenesis assay comprising primary endothelial cells as well as primary ECM-producing fibroblasts. In this assay HGF and VEGF as single factors and combined were tested for the potential to induce an angiogenic response, which was detected by image analysis assessing the area, length and branches of the formed vascular structures. The results show that the cytokines HGF and VEGF both promote angiogenesis in this co-culture assay by inducing distinguishable patterns of vascular structures. VEGF increases the length, area and branch point number of induced vessels whereas HGF mediates exclusively vascular area growth resulting in vascular structures of enlarged diameter. Moreover, the combination of both cytokines results in an additive increase of vascular diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号