首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive nonisotopic solution hybridization assay for detection of RNA is described and characterized using a pSP65 plasmid model system. The assay procedure is based on a hybridization reaction in solution between a biotinylated DNA probe and a target RNA. The biotin-labeled hybrids are captured on a microtiter plate coated with an antibody to biotin. Bound DNA-RNA hybrids are detected by an immunoreaction with an enzyme-labeled monoclonal antibody specifically directed against DNA-RNA heteropolymers and the hybrids are quantitatively measured with the addition of a fluorogenic substrate. Optimal conditions under which to perform the assay were hybridization time, 1000 min; temperature, 75 degrees C; probe concentration, 0.2 microgram/ml; extent of probe biotinylation, 6.7%; buffer stringency, 2x SSC. A bisulfite-modified DNA probe was compared to nick-translated probes synthesized with reporter groups of different lengths (bio-11-dUTP or bio-19-dUTP). All probes could detect 10 pg/ml of target RNA. The presence of nonhomologous DNA or RNA sequences reduced the sensitivity of RNA detection by one half-log to 32 pg/ml (1.6 pg/assay).  相似文献   

2.
Detection of DNA via an ion channel switch biosensor   总被引:1,自引:0,他引:1  
Detection of DNA by an ion channel switch biosensor has been demonstrated in a model system, using single-stranded oligonucleotide sequences of 52-84 bases in length. Two different biotinylated probes are bound, via streptavidin, either to the outer region of a gramicidin ion channel dimer or to an immobilized membrane component. The ion channels are switched off upon detection of DNA containing complementary epitopes to these probes, separated by a nonbinding region, at nanomolar levels. The DNA cross-links the ion channel to the immobilized species, preventing ions passing through the channel. Addition of DNase I after the target DNA has been added switches the ion channels on. The DNA response is dependent on the rate of hybridization of the individual probes to their complementary epitopes, as shown by using a single probe against DNA containing a repeat of the complementary epitope. These results were correlated with hybridization rates determined using surface plasmon resonance (BIAcore 2000), and with free energies of dimer formation for the probes.  相似文献   

3.
Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement for monitoring programs. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins. Assays are based on the discrimination of genetic differences in the species. A commercially available PCR ELISA Dig Detection Kit in a microtiter plate was adapted for the rapid assessment of specificity of the two probes used in a sandwich hybridization assay. The toxic dinoflagellate Alexandrium minutum was used as the target organism and a capture and signal probe were designed for a species-specific identification of this species. This assay also provided the necessary specificity tests prior to the probes being adapted to an automated biosensor using a sandwich hybridization format. All probes regardless of the detection method must be extensively tested prior to use in the field. Total rRNA was isolated from three different strains of A. minutum and the mean concentration of RNA per cell of was determined to be 0.028 ng ± 0.003. Thus, a standard calibration curve for different RNA concentrations was determined so that cell numbers could be inferred from the assay. The assay and the standard curve were evaluated by using spiked field samples. The results demonstrated that the molecular assay was able to detect A. minutum cells at different cell counts in the presence of a complex background.  相似文献   

4.
A Oser  W K Roth    G Valet 《Nucleic acids research》1988,16(3):1181-1196
A new labelling method for cloned DNA probes used in hybridization assays is described. The DNA insert of recombinant plasmid DNA was made partially single-stranded for the labelling reaction by a restriction enzyme digest, followed by a controlled exonuclease III incubation. A thiol-containing psoralen derivative was covalently bound through irradiation with UV-light to the remaining double-stranded region of the plasmid DNA. The psoralen-SH groups were labelled with a large number of metal chelators (diethylentriamine pentaacetic acid, DTPA) using poly-L-lysine as a macromolecular carrier. The main advantage of the labelling procedure is that a high degree of labelling is achieved without modification of the single-stranded DNA hybridizing sequences. The specific hybrids were labelled after filter hybridization with europium ions through the chelating groups of DTPA. The europium ions were quantitatively detected by time-resolved fluorometry. The sensitivity of the assay for target DNA detection was in the low picogram range, comparable to radioactively labelled DNA probes.  相似文献   

5.
《Mycological Research》2006,110(6):664-671
Microarray-based detection is limited by variable and inconsistent hybridization intensities across the diversity of probes used in each array. In this paper, we introduce a novel concept for the differentiation of detection targets using duplex melting kinetics. A microarray assay was developed on a PamChip microarray enabling the differentiation of target Phytophthora species using the melting kinetics of probe-target duplexes. In the majority of cases the hybridization kinetics of target and non-target duplexes differed significantly. Analysis of the melting kinetics of duplexes formed by probes with target and non-target DNA was found to be an effective method for determining specific hybridization and was independent of fluctuations in hybridization signal intensity. This form of analysis was more robust than the traditional approach based on hybridization intensity, and enabled the detection of individual Phytophthora species and mixtures thereof.  相似文献   

6.
In electrochemical DNA hybridization assays target or probe DNAs end-labeled with electroactive compounds have been frequently used. We show that multiple osmium labels yielding faradaic (at carbon or mercury electrodes) and catalytic signals (at mercury electrodes) can be easily covalently bound to DNA molecules. We use (GAA)(7) (T)(n) oligodeoxynucleotides (ODNs) with n ranging between 5 and 50. (T)(n) tails are selectively modified with osmium tetroxide,2,2'-bipyridine leaving the (GAA)(7) repeat intact for the DNA hybridization. These ODNs are applied as reporter probes (RP's) in DNA hybridization double-surface (DS) assay using magnetic beads for the DNA hybridization and pyrolytic graphite (PGE) or hanging mercury drop (HMDE) electrodes for the electrochemical detection. We show that in difference to the usual single-surface methods (where the RP has to be bound to target DNA near to the surface to communicate with the electrode) in the DS assay the RP can be bound to DNA regardless of its position and can used for the determination of the length of DNA repetitive sequences. Several fmols or about a hundred of amol of a RP with osmium-labeled (T)(50) tail can be detected at PGE and HMDE, respectively, at 1-2 min accumulation time.  相似文献   

7.
8.
A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.  相似文献   

9.
A sensitive nonisotopic hybridization assay for HIV-1 DNA   总被引:8,自引:0,他引:8  
We have developed a microtiter-based sandwich hybridization assay for the detection of low copy number HIV-1 sequences. The assay employs a capture DNA sequence covalently coupled to microtiter wells through linker arms. The detection probe is a biotin-labeled DNA fragment derived from sequences adjacent to the capture sequence. After hybridization in the presence of sample nucleic acid, the detection probe remains bound only if the sample contained complementary sequences spanning the junction between capture and detection probes. The amount of detection probe bound is quantified by incubation with a peroxidase-streptavidin conjugate and a colorimetric peroxidase substrate. This assay has been combined with enzymatic target amplification to achieve sensitive detection of HIV-1 in patient samples. Following amplification of HIV-1 DNA using the polymerase chain reaction technique, a 190-bp product is produced. This product is easily and specifically quantified using the sandwich hybridization assay. The resulting test can detect one HIV-1-infected cell in 10(5) cells or about 30 molecules of HIV-1 DNA.  相似文献   

10.
Kido C  Murano S  Tsuruoka M 《Gene》2000,259(1-2):123-127
The essential aim of this study was to compare two different methods, Southern hybridization and fluorescence polarization (FP) assay. They both detect specific hybridization and were examined using common asymmetric PCR products and probes. FP assay clearly showed the hybridization of probe DNAs with the asymmetric PCR products of their target genes. Southern blot patterns presented excellent consistency with the results of FP assay. In both methods, two types of Shiga toxin (vero toxin) genes held in enterohaemorrhagic Escherichia coli (EHEC) were used as target genes. For detection of the two genes, stx1 and stx2, two respective DNA probes were synthesized. Both in FP assay and in Southern hybridization, the probe for stx1 hybridized only with the product of stx1 and vice versa. The results of the DNA detection using different methods were completely in agreement. Moreover, FP assay makes it possible to detect the hybridization rapidly. In our high NaCl concentration condition, hybridization between the probes and the asymmetric PCR products could be monitored within about 15min.  相似文献   

11.
A facile, sensitive method for detecting specific sequences of oligonucleotides was developed. Detection of DNA sequences with single nucleotide discrimination is achieved by combining the selectivity of hybridization with an efficient cross-linking reaction. Readily synthesized bifunctional oligonucleotide probes containing a modified pyrimidine that is capable of forming interstrand cross-links under mild oxidative conditions internally, and biotin at their 5′-termini were used to discriminate between 16-nt long sites in plasmid DNA that differ by a single nucleotide. The target sequence was detected via fluorescence spectroscopy by utilizing conjugates of avidin and horseradish peroxidase in a microtiter plate assay. The method is able to detect as little as 250 fmol of target without using PCR and exhibits single nucleotide discrimination that approaches 200:1. In principle, this method is capable of probing any target sequence containing a 2′-deoxyadenosine.  相似文献   

12.
The preparation of DNA-tagged liposomes containing an encapsulated prosthetic group tracer, pyrroloquinoline quinone (PQQ), and their application to the development of a sandwich-type hybridization assay for the visual detection of single-stranded DNA are described. Capture DNA is conjugated to the surface of microtiter plate wells through a biotin-streptavidin interaction. Target DNA is incubated with the plate in high salt concentrations. The reporter DNA-tagged liposomes encapsulating PQQ, the prosthetic group of the apo-enzyme glucose dehydrogenase (GDH), are used as the label to probe for bound target DNA. After washing away unbound liposomes and subsequent lysis of the bound fraction by surfactant, PQQ is released and available to activate the apo-enzyme. In the presence of glucose and a redox dye, 2,6-dichlorophenol indophenol (DCPIP), the dye is reduced to yield an optical color change from blue to colorless. This transition is observed visually or spectrophotometrically. The degree of optical change is proportional to the amount of PQQ present, which directly relates to the number of liposomes and, thus, the total amount of target DNA. An arbitrary target DNA sequence is used as a model system, and a limit of detection of 62 fmol is achieved.  相似文献   

13.
Up-converting Phosphor Technology (UPT) particles were used as reporters in lateral-flow (LF) assays to detect single-stranded nucleic acids. The 400-nm phosphor particles exhibit strong visible luminescence upon excitation with infrared (IR) light resulting in the total absence of background autofluorescence from other biological compounds. A sandwich-type hybridization assay was applied using two sequence-specific oligonucleotides. One of the oligonucleotides probes was covalently bound to the UPT particle (reporter) for direct labeling and detection, whereas the second oligonucleotide probe contained biotin for capture by avidin during LF. The whole procedure of hybridization, UPT-LF detection, and analysis required a minimum time of 20 min. Moreover, aiming at minimal equipment demands, the hybridization conditions were chosen such that the entire assay could be performed at ambient temperature. During lateral flow, only targets hybridized to both capture and detection oligonucleotide were trapped and detected at an avidin capture line on the LF strip. Analysis (IR scanning) of the strips was performed in an adapted microtiter plate reader provided with a 980-nm IR laser for excitation of the phosphor particles (a portable reader was also available). Visible luminescence was measured and presented as relative fluorescence units (RFU) allowing convenient quantitation of the phosphor signal. With the assay described here as little as 0.1 fmol of a specific single-stranded nucleic acid target was detected in a background of 10 microg fish sperm DNA.  相似文献   

14.
A sandwich hybridization assay (SHA) was developed to detect 16S rRNAs indicative of phylogenetically distinct groups of marine bacterioplankton in a 96-well plate format as well as low-density arrays printed on a membrane support. The arrays were used in a field-deployable instrument, the Environmental Sample Processor (ESP). The SHA employs a chaotropic buffer for both cell homogenization and hybridization, thus target sequences are captured directly from crude homogenates. Capture probes for seven of nine different bacterioplankton clades examined reacted specifically when challenged with target and non-target 16S rRNAs derived from in vitro transcribed 16S rRNA genes cloned from natural samples. Detection limits were between 0.10–1.98 and 4.43– 12.54 fmole ml−1 homogenate for the 96-well plate and array SHA respectively. Arrays printed with five of the bacterioplankton-specific capture probes were deployed on the ESP in Monterey Bay, CA, twice in 2006 for a total of 25 days and also utilized in a laboratory time series study. Groups detected included marine alphaproteobacteria, SAR11, marine cyanobacteria, marine group I crenarchaea, and marine group II euryarchaea. To our knowledge this represents the first report of remote in situ DNA probe-based detection of marine bacterioplankton.  相似文献   

15.
A DNA hybridization assay was developed in microtiter plate format to detect the presence of toxic dinoflagellates in coastal waters. Simultaneous detection of multiple species was demonstrated using Karenia brevis, Karenia mikimotoi, and Amphidinium carterae. Molecular probes were designed to detect both K. brevis and K. mikimotoi and to distinguish between these two closely related species. The assay was used to detect K. brevis in coastal waters collected from the Rookery Bay National Estuarine Research Reserve. Assay results were verified by species-specific PCR and sequence analysis. The presence/absence of K. brevis was consistent with microscopic observation. Assay sensitivity was sufficient to detect K. brevis in amounts defined by a regional monitoring program as “present” (≤1000 cells/L). The assay yielded quick colorimetric results, used a single hybridization temperature, and conserved the amount of genomic DNA utilized by employing one set of PCR primers. The microplate assay provides a useful tool to quickly screen large sample sets for multiple target organisms.  相似文献   

16.
DNA microarrays have been widely adopted by the scientific community for a variety of applications. To improve the performance of microarrays there is a need for a fundamental understanding of the interplay between the various factors that affect microarray sensitivity and specificity. We use lattice Monte Carlo simulations to study the thermodynamics and kinetics of hybridization of single-stranded target genes in solution with complementary probe DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct and each segment represents a sequence of nucleotides ( approximately 11 nucleotides). Each probe segment interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how the probe length, temperature, or hybridization energy, and the stretch along the target that the probe segments complement, affect the extent of hybridization. For systems containing single probe and single target molecules, we observe that as the probe length increases, the probability of binding all probe segments to the target decreases, implying that the specificity decreases. We observe that probes 12-16 segments ( approximately 132-176 nucleotides) long gave the highest specificity and sensitivity. This agrees with the experimental results obtained by another research group, who found an optimal probe length of 150 nucleotides. As the hybridization energy increases, the longer probes are able to bind all their segments to the target, thus improving their specificity. The hybridization kinetics reveals that the segments at the ends of the probe are most likely to start the hybridization. The segments toward the center of the probe remain bound to the target for a longer time than the segments at the ends of the probe.  相似文献   

17.
We report here an extension of homogeneous assays based on fluorescence intensity and lifetime measuring on DNA hybridization. A novel decay probe that allows simple one-step nucleic acid detection with subnanomolar sensitivity, and is suitable for closed-tube applications, is introduced. The decay probe uses fluorescence resonance energy transfer (FRET) between a europium chelate donor and an organic fluorophore acceptor. The substantial change in the acceptor emission decay time on hybridization with the target sequence allows the direct separation of the hybridized and unhybridized probe populations in a time-resolved measurement. No additional sample manipulation or self-hybridization of the probes is required. The wavelength and decay time of a decay probe can be adjusted according to the selection of probe length and acceptor fluorophore, thereby making the probes applicable to multiplexed assays. Here we demonstrate the decay probe principle and decay probe-based, one-step, dual DNA assay using celiac disease-related target oligonucleotides (single-nucleotide polymorphisms [SNPs]) as model analytes. Decay probes showed specific response for their complementary DNA target and allowed good signal deconvolution based on simultaneous optical and temporal filtering. This technique potentially could be used to further increase the number of simultaneously detected DNA targets in a simple one-step homogeneous assay.  相似文献   

18.
19.
A dot-blot hybridization immunoenzymatic assay with a chemiluminescent endpoint was developed for the rapid and sensitive detection of viral and plasmid DNAs. Digoxigenin-labeled probes were used to detect cytomegalovirus, parvovirus B19, and plasmid pBR328 DNAs. Hybridized probes were immunoenzymatically visualized by anti-digoxigenin Fab fragments labeled with alkaline phosphatase, and adamantyl 1,2-dioxetane phenyl phosphate was used as chemiluminescent substrate. Results were recorded by instant photographic films. The chemiluminescent hybridization assay was performed in about 8 hr and was able to detect as little as 50-10 fg of homologous target DNA.  相似文献   

20.
应用异羟基洋地黄毒甙元标记的探针,检测了人和鸭的血清及肝脏中的乙型肝炎病毒核酸,并与~(32)P标记的同位素探针做了比较。结果证明,该探针的特异性和敏感性与同位素探针一致(0.2pg)。它可用于各种核酸杂交试验,如打点杂交、Southern和Northern转印杂交试验等。恰当地从标本中提取待测核酸,是应用该探针的重要条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号