首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt signaling has been shown to be important for axis formation in vertebrates. However, no Wnt ligand or receptor has been shown to be specifically expressed in all the organizer tissues in the mouse embryo. Here we report that the mouse frizzled 8 (mfz8) gene, a Wnt receptor, is expressed in the anterior visceral endoderm (AVE) and the anterior primitive streak, which have been shown to possess organizer activity. mFz8 is also expressed in the descendents of the anterior streak that comprise the anterior mesendoderm (AME) at midgastrulation, with subsequent expression in the anterior neurectoderm, which is specified and patterned by the AVE and AME. Thus, mfz8 is specifically expressed in the organizer tissues that establish the anterior-posterior axis in the mouse embryo.  相似文献   

2.
Previous studies on neural induction have identified regionally localized inducing activities, signaling molecules, potential competence factors and various other features of this important, early differentiation event. In this paper, we have developed an improved model system for analyzing neural induction and patterning using transverse blastoderm isolates obtained from gastrulating chick embryos. We use this model to establish the timing of neural specification and the spatial distribution of perinodal cells having organizer activity. We show that a tissue that acts either as an organizer or as an inducer of an organizer is spatially co-localized with the prospective neuroectoderm immediately rostral to the primitive streak in the early gastrula. As the primitive streak elongates, this tissue with organizing activity and the prospective neuroectoderm rostral to the streak separate. Furthermore, we show that up to and through the mid-primitive streak stage (i.e., stage 3c/3+), the prospective neuroectoderm cannot self-differentiate (i.e. , express neural markers and acquire neural plate morphology) in isolation from tissue with organizer activity. Signals from the organizer and from other more caudal regions of the primitive streak act on the rostral prospective neuroectoderm and the latter gains potency (i.e., is specified) by the fully elongated primitive streak stage (i.e., stage 3d). Transverse blastoderm isolates containing non-specified, prospective neuroectoderm provide an improved model system for analyzing early signaling events involved in neuraxis initiation and patterning.  相似文献   

3.
An organizer population has been identified in the anterior end of the primitive streak of the mid-streak stage embryo, by the expression of Hnf3beta, Gsc(lacZ) and Chrd, and the ability of these cells to induce a second neural axis in the host embryo. This cell population can therefore be regarded as the mid-gastrula organizer and, together with the early-gastrula organizer and the node, constitute the organizer of the mouse embryo at successive stages of development. The profile of genetic activity and the tissue contribution by cells in the organizer change during gastrulation, suggesting that the organizer may be populated by a succession of cell populations with different fates. Fine mapping of the epiblast in the posterior region of the early-streak stage embryo reveals that although the early-gastrula organizer contains cells that give rise to the axial mesoderm, the bulk of the progenitors of the head process and the notochord are localized outside the early gastrula organizer. In the mid-gastrula organizer, early gastrula organizer derived cells that are fated for the prechordal mesoderm are joined by the progenitors of the head process that are recruited from the epiblast previously anterior to the early gastrula organizer. Cells that are fated for the head process move anteriorly from the mid-gastrula organizer in a tight column along the midline of the embryo. Other mid-gastrula organizer cells join the expanding mesodermal layer and colonize the cranial and heart mesoderm. Progenitors of the trunk notochord that are localized in the anterior primitive streak of the mid-streak stage embryo are later incorporated into the node. The gastrula organizer is therefore composed of a constantly changing population of cells that are allocated to different parts of the axial mesoderm.  相似文献   

4.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

5.
The alignment of the left-right (LR) body axis relative to the anteroposterior (AP) and dorsoventral (DV) axes is central to the organization of the vertebrate body plan and is controlled by the node/organizer. Somitogenesis plays a key role in embryo morphogenesis as a principal component of AP elongation. How morphogenesis is coupled to axis specification is not well understood. We demonstrate that Wnt3a is required for LR asymmetry. Wnt3a activates the Delta/Notch pathway to regulate perinodal expression of the left determinant Nodal, while simultaneously controlling the segmentation clock and the molecular oscillations of the Wnt/beta-catenin and Notch pathways. We provide evidence that Wnt3a, expressed in the primitive streak and dorsal posterior node, acts as a long-range signaling molecule, directly regulating target gene expression throughout the node and presomitic mesoderm. Wnt3a may also modulate the symmetry-breaking activity of mechanosensory cilia in the node. Thus, Wnt3a links the segmentation clock and AP axis elongation with key left-determining events, suggesting that Wnt3a is an integral component of the trunk organizer.  相似文献   

6.
The human fertilized egg is not an embryo, but, more accurately, a conceptus, which contains all the information required to establish both the embryo and extraembryonic supporting tissues. The fertilized eggs of placental mammals, including humans, are entirely dependent upon the female's uterine environment for development to birth. At least half, possibly more, fertilized eggs, or potential lives, do not survive to birth, the greatest loss thought to occur during preimplantation and implantation. Which conceptuses will be lost and which will progress to birth cannot be predicted. The. preimplantation conceptus exhibits extreme developmental lability. Importantly, twinning can occur throughout the preimplantation and implantation phases, and thus, a single human individual has not emerged from the conceptus during this time period. Once the primitive streak is complete during early postimplantation development, identical twinning no longer occurs and the individual emerges. Thus, emergence of the human individual is a process. No single event thus far known is more important than any other prior to formation of the primitive streak. Formation of the streak is a defining moment in the origin of the individual. All further organization of the fetus occurs around this midline. Thus, by 14 days in the human, the body plan for life is established.  相似文献   

7.
The mesoblast of the primary organizer region of the developing chick embryo at the early head process stage was examined with the scanning electron microscope. It was found that the mesoblast layer is patterned from its inception at the primitive streak. Viewed dorsally, the mesoblast region most recently traversed by Hensen's node is metameric. Each segment consists of two 175-μm-diameter circular buttons of paraxial mesoblast (somitomeres) and an enclosed axial region. These tripartite segments are stacked tandemly and mark precisely, in the ectoderm above, the limit of neural plate formation. Viewed ventrally, the metameric pattern of the mesoblast is most closely mimicked by underlying endoblast, which shows corresponding radially arranged wedge-shaped cells in somitomere-sized circular patches. At this stage of development, each paraxial somitomere is a slightly hollowed, squat cylinder, composed of tapering mesenchymal cells whose long axes are directed toward the core center. Closely timed with neurulation, somitomeres undergo morphogenesis, being first converted to triangular wedges and, finally, condensed into cubes. Anteriorly, somitomeres participate in branchiomeric development, while posteriorly, they develop into somites. Examination of segmental plates shows that they consist of about 11 tandem somitomeres not visible by light microscopy. The most mature somitomeres, closest to the emerging somites, are delineated from one another by cellular orientations and the progressive buildup of fibrous extracellular matrix. The least mature somitomeres are not as well defined, but appear initially just posterior to Hensen's node and merge medially with the notochordal process. The observations suggest that the emergence of somitomeres from the paraxial mesoblast of the primitive streak is the result of its association with nodal cells. Further, this combined association of the mesoblast heralds primary induction and establishes the metameric pattern of the basic body plan.  相似文献   

8.
During avian development the earliest phase in which the avian embryo expresses axial features of a left-right axis is at the primitive streak stage. Until the stage of definitive primitive streak (streak 4 H&H), the axis seems to possess morphological bilateral symmetry. Morphological asymmetry begins only during the next few hours of incubation, with development of overt morphological and molecular asymmetry within Hensen's node (stage 5 H&H). In this report, we present an experimental study aimed at following the pattern of cell movements during primitive streak formation and gastrulation of specific left-right regions from earlier stages of the avian embryo. To determine the origin of cells contributing to each side of the primitive streak, we applied the dye Lysinated-Rodamine-Dextran (LRD) to one half, either left or right, of the pre-streak blastoderm (stages X–XIII, EG&K). We tried to estimate the relative cell contribution to primitive streak formation, and to the three germ layers evolving during gastrulation in the context of the left-right axis. Moreover, we asked whether the midline serves as a border, that is, as a physiological barrier preventing cell passing during gastrulation. Our results demonstrate that on each side of the axis, either the right or the left, most of the cells originate from the same half of a pre-streak blastoderm, populate the same half of the PS and contribute to tissues largely confined to that particular side. However, along the primitive streak, a few cells were detected on the opposite side of the midline. Moreover, variation in the number of cells crossing the midline at specific regions along the primitive streak was found. Most crossing cells were located near the mid rostrocaudal extent of the primitive streak, from 25–85% of its length. At the posterior end of the primitive streak, fewer crossing cells were detected. At the anterior region of the PS, that is, within Hensen's node, cells do not cross the midline. These results suggest that differences occur in the process of ingression along the rostrocaudal extent of the PS. Dev. Genet. 23:175–184, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The cell populations and morphogenetic movements that contribute to the formation of the avian primitive streak and organizer-Hensen's node-are poorly understood. We labeled selected groups of cells with fluorescent dyes and then followed them over time during formation and progression of the primitive streak and formation of Hensen's node. We show that (1) the primitive streak arises from a localized population of epiblast cells spanning the caudal midline of Koller's sickle, with the mid-dorsal cells of the primitive streak arising from the midline of the epiblast overlying Koller's sickle and the deeper and more lateral primitive streak cells arising more laterally within the epiblast overlying the sickle, from an arch subtending about 30 degrees; (2) convergent extension movements of cells in the epiblast overlying Koller's sickle contribute to formation of the initial primitive streak; and (3) Hensen's node is derived from a mixture of cells originating both from the epiblast just rostral to the incipient (stage 2) primitive streak and later from the epiblast just rostral to the elongating (stage 3a/b) primitive streak, as well as from the rostral tip of the progressing streak itself. Collectively, these results provide new information on the formation of the avian primitive streak and organizer, increasing our understanding of these important events of early development of amniotes.  相似文献   

10.
K Joubin  C D Stern 《Cell》1999,98(5):559-571
The organizer is a unique region in the gastrulating embryo that induces and patterns the body axis. It arises before gastrulation under the influence of the Nieuwkoop center. We show that during gastrulation, cell movements bring cells into and out of the chick organizer, Hensen's node. During these movements, cells acquire and lose organizer properties according to their position. A "node inducing center," which emits Vg1 and Wnt8C, is located in the middle of the primitive streak. Its activity is inhibited by ADMP produced by the node and by BMPs at the periphery. These interactions define the organizer as a position in the embryo, whose cellular makeup is constantly changing, and explain the phenomenon of organizer regeneration.  相似文献   

11.
Despite its importance as the source of one of three major vascular systems in the mammalian conceptus, little is known about the murine allantois, which will become the umbilical cord of the chorio-allantoic placenta. During gastrulation, the allantois grows into the exocoelomic cavity as a mesodermal extension of the posterior primitive streak. On the basis of morphology, gene expression and/or function, three cell types have been identified in the allantois: an outer layer of mesothelial cells, whose distal portion will become transformed into chorio-adhesive cells, and endothelial cells within the core. Formation of endothelium and chorio-adhesive cells begins in the distal region of the allantois, farthest from the streak. Over time, endothelium spreads to the proximal allantoic region, whilst the distal outer layer of presumptive mesothelium gradually acquires vascular cell adhesion molecule (VCAM1) and mediates chorio-allantoic union. Intriguingly, the VCAM1 domain does not extend into the proximal allantoic region. How these three allantoic cell types are established is not known, although contact with the chorion has been discounted. In this study, we have investigated how the allantois differentiates, with the goal of discriminating between extrinsic mechanisms involving the primitive streak and an intrinsic role for the allantois itself. Exploiting previous observations that the streak contributes mesoderm to the allantois throughout the latter's early development, microsurgery was used to remove allantoises at ten developmental stages. Subsequent whole embryo culture of operated conceptuses resulted in the formation of regenerated allantoises at all time points. Aside from being generally shorter than normal, none of the regenerates exhibited abnormal differentiation or inappropriate cell relationships. Rather, all of them resembled intact allantoises by morphological, molecular and functional criteria. Moreover, fate mapping adjacent yolk sac and amniotic mesoderm revealed that these tissues and their associated bone morphogenetic protein 4 (BMP4) did not contribute to restoration of allantoic outgrowth and differentiation during allantoic regeneration. Thus, on the basis of these observations, we conclude that specification of allantoic endothelium, mesothelium and chorio-adhesive cells does not occur by a streak-related mechanism during the time that proximal epiblast travels through it and is transformed into allantoic mesoderm. Rather, all three cell-types are established by mechanisms intrinsic to the allantois, and possibly include roles for cell age and cell position. However, although chorio-adhesive cells were not specified within the streak, we discovered that the streak nonetheless plays a role in establishing VCAM1's expression domain, which typically began and was thereafter maintained at a defined distance from the primitive streak. When allantoises were removed from contact with the streak, normally VCAM1-negative proximal allantoic regions acquired VCAM1. These results suggested that the streak suppresses formation of chorio-adhesive cells in allantoic mesoderm closest to it. Together with previous results, findings presented here suggest a model of differentiation of allantoic mesoderm that invokes intrinsic and extrinsic mechanisms, all of which appear to be activated once the allantoic bud has formed.  相似文献   

12.
13.
We have used a computer simulation system to examine formation of the chick primitive streak and to test the proposal (Wei and Mikawa Development 127 (2000) 87) that oriented cell division could account for primitive streak elongation. We find that this proposal is inadequate to explain elongation of the streak. In contrast, a correctly patterned model streak can be generated if two putative mechanisms are operative. First, a subpopulation of precursor cells that is known to contribute to the streak is assigned a specific, but simple, movement pattern. Second, additional cells within the epiblast are allowed to incorporate into the streak based on near-neighbor relations. In this model, the streak is cast as a steady-state system with continuous recruitment of neighboring epiblast cells, egress of cells into deeper layers and an internal pattern of cell movement. The model accurately portrays elongation and maintenance of a robust streak, changes in the composition of the streak and defects in the streak after experimental manipulation.  相似文献   

14.
Heart development depends on the spatio-temporally regulated contribution of progenitor cells from the primary, secondary and anterior heart fields. Primary heart field (PHF) cells are first recruited to form a linear heart tube; later, they contribute to the inflow myocardium of the four-chambered heart. Subsequently cells from the secondary (SHF) and anterior heart fields (AHF) are added to the heart tube and contribute to both the inflow and outflow myocardium. In amniotes, progenitors of the linear heart tube have been mapped to the anterior-middle region of the early primitive streak. After ingression, these cells are located within bilateral heart fields in the lateral plate mesoderm. On the other hand SHF/AHF field progenitors are situated anterior to the linear heart tube, however, the origin and location of these progenitors prior to the development of the heart tube remains elusive. Thus, an unresolved question in the process of cardiac development is where SHF/AHF progenitors originate from during gastrulation and whether they come from a region in the primitive streak distinct from that which generates the PHF. To determine the origin and location of SHF/AHF progenitors we used vital dye injection and tissue grafting experiments to map the location and ingression site of outflow myocardium progenitors in early primitive streak stage chicken embryos. Cells giving rise to the AHF ingressed from a rostral region of the primitive streak, termed region ‘A’. During development these cells were located in the cranial paraxial mesoderm and in the pharyngeal mesoderm. Furthermore we identified region ‘B’, located posterior to ‘A’, which gave rise to progenitors that contributed to the primary heart tube and the outflow tract. Our studies identify two regions in the early primitive streak, one which generates cells of the AHF and a second from which cardiac progenitors of the PHF and SHF emerge.  相似文献   

15.

Background  

Chick definitive endoderm is an important source of signals that pattern the early embryo forming a central structure around which the body plan is constructed. Although the origin of definitive endoderm has been mapped in the chick, arising principally from rostral streak at elongating streak stages, it is not known when this layer first becomes fully committed to its germ layer fate, an important issue to resolve in light of its critical role in subsequent patterning of the early embryo.  相似文献   

16.

Background  

Co-ordinated cell movement is a fundamental feature of developing embryos. Massive cell movements occur during vertebrate gastrulation and during the subsequent extension of the embryonic body axis. These are controlled by cell-cell signalling and a number of pathways have been implicated. Here we use long-term video microscopy in chicken embryos to visualize the migration routes and movement behaviour of mesoderm progenitor cells as they emerge from the primitive streak (PS) between HH stages 7 and 10.  相似文献   

17.
In vitro chondrogenesis is possible in the chick embryo from stage 4 of Hamburger and Hamilton (1951), only 18-19 hours of incubation, before somite formation. In stage 4 of Hamburger and Hamilton (1951) the chondroblasts are placed laterally to the primitive streak and notochord cells are not necessary for cartilage differentiation.  相似文献   

18.
The cells that are normally fated to form notochord occupy a region at the rostral tip of the primitive streak at late gastrula/early neurula stages of avian and mammalian development. If these cells are surgically removed from avian embryos in culture, a notochord will nonetheless form in the majority of cases. The origin of this reconstituted notochord previously had not been investigated and was the objective of this study. Chick embryos at late gastrulal early neurula stages were cultured, and the rostral tip of the primitive streak including Hensen's node was removed and replaced with non-node cells from quail epiblast to ensure that the cells normally fated to be notochord would be absent and that healing of the blastoderm would occur. Embryos were allowed to develop for 24 hr, and the presence and origin (host or graft) of the notochord were assessed using antibodies against notochord or quail cells. Two notochords typically developed; both were almost exclusively of host origin. The primitive streak, and in some cases adjacent tissues, was removed from another group of embryos in an attempt to estimate the mediolateral position and extent of the cells required to form reconstituted notochord. Additional experimental embryos with and without grafts were transected at various rostrocaudal levels in an attempt to estimate the rostrocaudal extent of the cells required to form reconstituted notochord. Finally, various levels of the primitive streak either were placed in a neutral environment (the germ cell crescent) or were grafted in place of the node. Collective results from all experiments indicate that the areas lateral to the rostral portion of the primitive streak, estimated to have a rostrocaudal span of less than 500 μm and a mediolateral extent of less than 250 μm, are critical for formation of the reconstituted notochord. Fate mapping and histological examination of this region identify 4 possible precursor cell populations. Further studies are underway to determine which of the 4 possible precursor cell types forms or induces the reconstituted notochord, and which tissue interactions underlie this change in cell fate. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Gastrulation in higher vertebrate species classically commences with the generation of mesoderm cells in the primitive streak by epithelio-mesenchymal transformation of epiblast cells. However, the primitive streak also marks, with its longitudinal orientation in the posterior part of the conceptus, the anterior-posterior (or head-tail) axis of the embryo. Results obtained in chick and mouse suggest that signals secreted by the hypoblast (or visceral endoderm), the extraembryonic tissue covering the epiblast ventrally, antagonise the mesoderm induction cascade in the anterior part of the epiblast and thereby restrict streak development to the posterior pole (and possibly initiate head development anteriorly). In this paper we took advantage of the disc-shape morphology of the rabbit gastrula for defining the expression compartments of the signalling molecules Cerberus and Dickkopf at pre-gastrulation and early gastrulation stages in a mammal other than the mouse. The two molecules are expressed in novel expression compartments in a complementary fashion both in the hypoblast and in the emerging primitive streak. In loss-of-function experiments, carried out in a New-type culturing system, hypoblast was removed prior to culture at defined stages before and at the beginning of gastrulation. The epiblast shows a stage-dependent and topographically restricted susceptibility to express Brachyury, a T-box gene pivotal for mesoderm formation, and to transform into (histologically proven) mesoderm. These results confirm for the mammalian embryo that the anterior-posterior axis of the conceptus is formed first as a molecular prepattern in the hypoblast and then irrevocably fixed, under the control of signals secreted from the hypoblast, by epithelio-mesenchymal transformation (primitive streak formation) in the epiblast.Edited by D. Tautz  相似文献   

20.
Gastrulation in the mouse: the role of the homeobox gene goosecoid.   总被引:17,自引:0,他引:17  
Mouse goosecoid is a homeobox gene expressed briefly during early gastrulation. Its mRNA accumulates as a patch on the side of the epiblast at the site where the primitive streak is first formed. goosecoid-expressing cells are then found at the anterior end of the developing primitive streak, and finally in the anteriormost mesoderm at the tip of the early mouse gastrula, a region that gives rise to the head process. Treatment of early mouse embryos with activin results in goosecoid mRNA accumulation in the entire epiblast, suggesting that a localized signal induces goosecoid expression during development. Transplantation experiments indicate that the tip of the murine early gastrula is the equivalent of the organizer of the amphibian gastrula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号