首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy are only some of the more common end results of an infection with a human T-cell leukemia virus type 1 (HTLV-I). Expanding from our previous reports, we synthesized all different permutations of tetrapeptidic HTLV-I protease inhibitors using at least eight P(3)-cap and five P(1)(')-cap moieties. The inhibitors exhibited over 97% inhibition against HIV-1 protease and a wide range of inhibitory activity against HTLV-I protease.  相似文献   

2.
The human T cell lymphotropic/leukemia virus type 1 (HTLV-I) causes adult T cell lymphoma/leukemia. The virus is also responsible for chronic progressive myelopathy and several inflammatory diseases. To stop the manufacturing of new viral components, in our previous reports, we derived small tetrapeptidic HTLV-I protease inhibitors with an important amide-capping moiety at the P3 residue. In the current study, we removed the P3-cap moiety and, with great difficulty, optimized the P3 residue for HTLV-I protease inhibition potency. We discovered a very potent and small tetrapeptidic HTLV-I protease inhibitor (KNI-10774a, IC50 = 13 nM).  相似文献   

3.
The human T-cell leukemia virus type 1 (HTLV-I) causes adult T-cell leukemia and several severe chronic diseases. HTLV-I protease (PR) inhibition stops the propagation of the virus. Herein, truncation studies were performed on potent octapeptidic HTLV-I PR inhibitor KNI-10161 to derive small hexapeptide KNI-10127 with some loss in activity. After performing residue-substitution studies on compound KNI-10127, HTLV-I PR inhibitory activity was recovered in inhibitor KNI-10166.  相似文献   

4.
Towards the development of chemotherapy for the infection by human T-cell leukemia virus type I (HTLV-I), we have established evaluation systems for HTLV-I protease (PR) inhibitors using both recombinant and chemically synthesized HTLV-I PRs. Newly synthesized substrate-based inhibitors containing hydroxymethylcarbonyl (HMC) isostere showed potent anti-HTLV-I PR activity.  相似文献   

5.
The human T cell leukemia/lymphotropic virus type 1 (HTLV-I) is clinically associated with adult T cell leukemia/lymphoma, HTLV-I associated myelopathy/tropical spastic paraparesis, and a number of other chronic inflammatory diseases. To stop the replication of the virus, we developed highly potent tetrapeptidic HTLV-I protease inhibitors. In a recent X-ray crystallography study, several of our inhibitors could not form co-crystal complexes with the protease due to their high hydrophobicity. In the current study, we designed, synthesized and evaluated the HTLV-I protease inhibition potency of compounds with hydrophilic end-capping moieties with the aim of improving pharmaceutic and pharmacokinetic properties.  相似文献   

6.
The culprit behind adult T-cell leukemia, myelopathy/tropical paraparesis, and a plethora of inflammatory diseases is the human T-cell leukemia virus type 1 (HTLV-I). We recently unveiled a potent hexapeptidic HTLV-I protease inhibitor, KNI-10166, composed mostly of natural amino acid residues. Herein, we report the derivation of potent tetrapeptidic inhibitor KNI-10516, possessing only non-natural amino acid residues.  相似文献   

7.
Aspartic proteases have emerged as targets for substrate-based inhibitor design due to their vital roles in the life cycles of the organisms that cause AIDS, malaria, leukemia, and other infectious diseases. Based on the concept of mimicking the substrate transition-state, we designed and synthesized a novel class of aspartic protease inhibitors containing the hydroxymethylcarbonyl (HMC) isostere. An unnatural amino acid, allophenylnorstatine [Apns; (2 S ,3 S )-3-amino-2-hydroxy-4-phenylbutyric acid], was incorporated at the P1 site in a series of peptidomimetic compounds that mimic the natural substrates of the HIV, HTLV-I, and malarial aspartic proteases. From extensive structure-activity relationship studies, we were able to identify a series of highly potent peptidomimetic inhibitors of HIV protease. One highly potent inhibitor of the malarial aspartic protease (plasmepsin II) was identified. Finally, a promising lead compound against the HTLV-I protease was identified.  相似文献   

8.
A series of inhibitors containing all possible isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid was synthesized and tested for inhibition of HIV-1 protease. Incorporation of the (3S,4S) isomer of the t-butyloxycarbonyl protected amino acid into the sequence Glu-Phe resulted in a potent inhibitor of HIV-1 protease (Ki = 63 nM). This inhibitor is at least 47-times more potent than the inhibitors containing other isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid, indicating that the (3S,4S) isomer is the preferred isomer for binding to HIV-1 protease.  相似文献   

9.
Human T-cell leukemia virus type I (HTLV-I) is the causative agent for adult T-cell leukemia (ATL). Molecularly, ATL cells have extensive aneugenic abnormalities that occur, at least in part, from cell cycle dysregulation by the HTLV-I-encoded Tax oncoprotein. Here, we compared six HTLV-I-transformed cells to Jurkat and primary peripheral blood mononuclear cells (PBMC) in their responses to treatment with microtubule inhibitors. We found that both Jurkat and PBMCs arrested efficiently in mitosis when treated with nocodazole. By contrast, all six HTLV-I cells failed to arrest comparably in mitosis, suggesting that ATL cells have a defect in the mitotic spindle assembly checkpoint. Mechanistically, we observed that in HTLV-I Tax-expressing cells human spindle assembly checkpoint factors hsMAD1 and hsMAD2 were mislocated from the nucleus to the cytoplasm. This altered localization of hsMAD1 and hsMAD2 correlated with loss of mitotic checkpoint function and chemoresistance to microtubule inhibitors.  相似文献   

10.
Novel tripeptidyl C-terminal Michael acceptors with an ester replacement of the P(2)-P(3) amide bond were investigated as irreversible inhibitors of the human rhinovirus (HRV) 3C protease (3CP). When screened against HRV serotype-14 the best compound was shown to have very good 3CP inhibition (k(obs)/[I]=270,000M(-1)s(-1)) and potent in vitro antiviral activity (EC(50)=7.0nM).  相似文献   

11.
A new class of potent sulfoximine inhibitors for HIV-1 protease has been designed and synthesized. Substitution of the sulfoximine moiety into different parent compounds yields different inhibition effects. While our previously studied sulfoximine-based inhibitors display potency of 2.5 nM (IC(50)) against HIV-1 protease, introduction of the sulfoximine moiety into the asymmetric Indinavir yielded only micromolar inhibition. Docking studies showed structural variations in their modes of binding which explains this unexpected observation. The implication of these observations in the development of other sulfoximine inhibitors is discussed.  相似文献   

12.
2,4-Disubstituted pyrimidines were synthesized as a novel class of KDR kinase inhibitors. Evaluation of the SAR of the screening lead compound 1 (KDR IC(50)=105 nM, Cell IC(50)=8% inhibition at 500 nM) led to the potent 3,5-dimethylaniline derivative 2d (KDR IC(50)=6 nM, cell IC(50)=19 nM).  相似文献   

13.
Human T-cell leukemia virus type 1 (HTLV-1) is a type C human retrovirus and is the causative agent of adult T-cell leukemia and other diseases. The enzymatic and structural proteins of HTLV-I are synthesized as part of a Gag-Pro-Pol precursor polyprotein, and the mature proteins are released by proteolytic processing catalyzed by HTLV-I protease. The locations of most of the proteolytic cleavage sites are known, however, the site that creates the N-terminus of HTLV-1 integrase has not been previously identified. A 15 residue peptide corresponding to junction of the C-terminus of RNaseH and N-terminus of integrase (DALLITPVLQLSPAF-OH) was incubated with HTLV-1 protease. Analysis of the cleavage products by LC-MS revealed fragments Ac-DALLITPVLQL-OH and H(2)N-SPAF-OH were produced, indicating cleavage between the leucine and serine. This is the first physical identification of the N-terminal amino acid sequence of the integrase of HTLV-1.  相似文献   

14.
C L Ruegg  C R Monell    M Strand 《Journal of virology》1989,63(8):3250-3256
Synthetic peptides containing portions of a highly conserved region of retroviral transmembrane proteins of human and animal retroviruses were tested for their ability to inhibit lymphoproliferation to determine the minimum amino acid sequence required. The previously reported immunosuppression mediated by the peptide CKS-17 was confirmed and further localized to a sequence of eight residues essentially identical to the sequence present in the transmembrane protein gp21 of human T-lymphotropic virus types I and II (HTLV-I and -II). To substantiate the physiological relevance of the inhibition of lymphoproliferation observed with the synthetic peptides and to relate this activity to the intact protein, we purified the Rauscher murine leukemia virus transmembrane protein p15E by immunoaffinity chromatography and report that this purified component presented in the form of protein micelles inhibited the interleukin-2-dependent proliferation of the murine T-cell line CTLL-2 in a dose-dependent manner, with a half-maximal inhibitory dose (ID50) of approximately 16 nM. In comparison, the ID50 concentration of a recombinant form of p15E required to inhibit lymphoproliferation was approximately 2.2 microM. The results reported here support the hypothesis that the transmembrane protein gp21 of HTLV-I and -II participates in the mechanism of immunosuppression previously reported for the transmembrane proteins of feline leukemia virus and other animal retroviruses. Thus, the transmembrane protein of HTLV-I, the etiological agent of adult T-cell leukemia-lymphoma, may be partially responsible for the immunocompromised clinical course of this disease that results in fatal opportunistic infections in a majority of cases.  相似文献   

15.
A series of HIV-1 protease inhibitors having new tetrahydrofuran P2/P2' groups have been synthesised and tested for protease inhibition and antiviral activity. Six novel 4-aminotetrahydrofuran derivatives were prepared starting from commercially available isopropylidene-alpha-D-xylofuranose yielding six symmetrical and six unsymmetrical inhibitors. Promising sub nanomolar HIV-1 protease inhibitory activities were obtained. The X-ray crystal structure of the most potent inhibitor (23, K(i) 0.25 nM) co-crystallised with HIV-1 protease is discussed and the binding compared with inhibitors 1a and 1b.  相似文献   

16.
A series of P1-substituted biaryl amprenavir derivatives was designed and synthesized. These compounds were evaluated for enzyme inhibition and antiviral activity in vitro. Several compounds showed highly efficient antiviral activity with EC(50) values down to 0.10nM, which are more potent than marketed HIV-1 protease inhibitors. Docking study indicated that 12c has similar binding mode to amprenavir with full occupancy in P1.  相似文献   

17.
Human T-cell leukemia virus type I (HTLV-I) protease has been purified to homogeneity from a strain of recombinant Escherichia coli. The protease was expressed as a larger precursor, which was autoprocessed to form a mature protease. Protein chemical analyses revealed the coding sequence of mature protease, which agreed with the putative sequence predicted from the sequence of bovine leukemia virus protease. The purified protease processed the natural substrate gag precursor (p53) to form gag p19 and gag p24. The protease activity was inhibited by pepstatin A. These results provide direct evidence that this protease belongs to the aspartic protease family and has an activity consistent with the protease in HTLV-I virion.  相似文献   

18.
The interaction between HIV-1 protease and reversible inhibitors was studied by surface plasmon resonance biosensor technology. The steady-state binding level and the time course of association and dissociation could be observed by measuring the binding of inhibitors injected in a continuous flow of buffer to the immobilized enzyme. Fourteen low molecular weight inhibitors (500-700 Da), including the four clinically used HIV-1 protease inhibitors (indinavir, nelfinavir, ritonavir, and saquinavir), were analyzed. Affinities were estimated as B(50) values from a series of sensorgrams at different concentrations of inhibitors. These values were found to be correlated with inhibition constants (K(i)) determined by an enzyme inhibition assay (r(2) = 0.84, logarithmic values). Dissociation rates were estimated at a single saturating concentration of the inhibitors as t(1/2,obs), but these values did not correlate with K(i) (r(2) = 0.26, logarithmic values). Indinavir had the highest affinity (B(50) = 11 nM) and the fastest dissociation (t(1/2,obs) = 500 s) among the clinically used inhibitors while saquinavir had a lower affinity (B(50) = 25 nM) and the slowest dissociation rate (t(1/2,obs) = 6500 s). Since these two inhibitors have similar K(i) values, the differences in dissociation rates reveal important characteristics in the interaction that cannot be obtained by the inhibition studies. The biosensor data are expected to be of greater in vivo relevance since the experiments were performed in a buffer more similar to physiological conditions.  相似文献   

19.
Understanding the factors that affect the activity of Human T-cell Leukemia Virus type I (HTLV-I) protease is essential for the discovery of inhibitors to be used for the treatment of HTLV-I infection, but little has been reported on the protease to date. Here we report the production of HTLV-I protease in purified yields greater than 150 mg/L, determination of its extinction coefficient, and determination of the optimum conditions for cleavage of the p19/24 substrates (DABCYL)-(GABA)-PQVL-Nph-VMH-(EDANS), (DABSYL)-(GABA)-PQVL-Nph-VMH-(EDANS), and (DABSYL)-(GABA)-PQVLPVMH-(EDANS). The highest activity was found at pH 5.2-5.3 and 37 degrees C. There was no effect on activity upon change in sodium chloride concentration from 0 to 1500 mM. The values of K(m) and k(cat) for cleavage of these substrates by the protease with and without the histidine tag were determined.  相似文献   

20.
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号