首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The assembly of herpesvirus capsids is a complex process involving interactions of multiple proteins in the cytoplasm and in the nucleus. Based on comparative genome analyses, varicella-zoster virus (VZV) open reading frame 23 (ORF23) encodes a conserved capsid protein, referred to as VP26 (UL35) in other alphaherpesviruses. Mutagenesis using a VZV bacterial artificial chromosome system showed that ORF23 was dispensable for replication in vitro. However, the absence of ORF23 disrupted capsid assembly in a melanoma cell line. Expression of ORF23 as a red fluorescent protein (RFP) fusion protein appeared to have a dominant negative effect on replication that was rescued by ORF23 expression from a nonnative site in the VZV genome. In contrast to its VP26 homolog, ORF23 has an intrinsic nuclear localization capacity that was mapped to an SRSRVV motif at residues 229 to 234 in the extreme C terminus of ORF23. In addition, coexpression with ORF23 resulted in nuclear import of the major capsid protein, ORF40. VZV ORF33.5 also translocated ORF40, which may provide a redundant mechanism in vitro but appears insufficient to overcome the dominant negative effect of the monomeric RFP-ORF23 (mRFP23) fusion protein. ORF23 was required for VZV infection of human skin xenografts, indicating that ORF33.5 does not compensate for lack of ORF23 in vivo. These observations suggest a model of VZV capsid assembly in which nuclear transport of the major capsid protein and associated proteins requires ORF23 during VZV replication in the human host. If so, ORF23 expression could be a target for a novel antiviral drug against VZV.  相似文献   

2.
The pathogenesis of varicella-zoster virus (VZV) involves a cell-associated viremia during which infectious virus is carried from sites of respiratory mucosal inoculation to the skin. We now demonstrate that VZV infection of T cells is associated with robust virion production and modulation of the apoptosis and interferon pathways within these cells. The VZV serine/threonine protein kinase encoded by ORF66 is essential for the efficient replication of VZV in T cells. Preventing ORF66 protein expression by stop codon insertion (pOka66S) impaired the growth of the parent Oka (pOka) strain in T cells in SCID-hu T-cell xenografts in vivo and reduced formation of VZV virions. The lack of ORF66 protein also increased the susceptibility of infected T cells to apoptosis and reduced the capacity of the virus to interfere with induction of the interferon (IFN) signaling pathway following exposure to IFN-gamma. However, preventing ORF66 protein expression only slightly reduced growth in melanoma cells in culture and did not diminish virion formation in these cells. The pOka66S virus showed only a slight defect in growth in SCID-hu skin implants compared with intact pOka. These observations suggest that the ORF66 kinase plays a unique role during infection of T cells and supports VZV T-cell tropism by contributing to immune evasion and enhancing survival of infected T cells.  相似文献   

3.
Varicella-zoster virus (VZV) glycoprotein E (gE) is a multifunctional protein important for cell-cell spread, envelopment, and possibly entry. In contrast to other alphaherpesviruses, gE is essential for VZV replication. Interestingly, the N-terminal region of gE, comprised of amino acids 1 to 188, was shown not to be conserved in the other alphaherpesviruses by bioinformatics analysis. Mutational analysis was performed to investigate the functions associated with this unique gE N-terminal region. Linker insertions, serine-to-alanine mutations, and deletions were introduced in the gE N-terminal region in the VZV genome, and the effects of these mutations on virus replication and cell-cell spread, gE trafficking and localization, virion formation, and replication in vivo in the skin were analyzed. In summary, mutagenesis of the gE N-terminal region identified a new functional region in the VZV gE ectodomain essential for cell-cell spread and the pathogenesis of VZV skin tropism and demonstrated that different subdomains of the unique N-terminal region had specific roles in viral replication, cell-cell spread, and secondary envelopment.  相似文献   

4.
Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier.  相似文献   

5.
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for VZV replication. To further analyze the functions of gE in VZV replication, a full deletion and point mutations were made in the 62-amino-acid (aa) C-terminal domain. Targeted mutations were introduced in YAGL (aa 582 to 585), which mediates gE endocytosis, AYRV (aa 568 to 571), which targets gE to the trans-Golgi network (TGN), and SSTT, an "acid cluster" comprising a phosphorylation motif (aa 588 to 601). Substitutions Y582G in YAGL, Y569A in AYRV, and S593A, S595A, T596A, and T598A in SSTT were introduced into the viral genome by using VZV cosmids. These experiments demonstrated a hierarchy in the contributions of these C-terminal motifs to VZV replication and virulence. Deletion of the gE C terminus and mutation of YAGL were lethal for VZV replication in vitro. Mutations of AYRV and SSTT were compatible with recovery of VZV, but the AYRV mutation resulted in rapid virus spread in vitro and the SSTT mutation resulted in higher virus titers than were observed for the parental rOka strain. When the rOka-gE-AYRV and rOka-gE-SSTT mutants were evaluated in skin and T-cell xenografts in SCIDhu mice, interference with TGN targeting was associated with substantial attenuation, especially in skin, whereas the SSTT mutation did not alter VZV infectivity in vivo. These results provide the first information about how targeted mutations of this essential VZV glycoprotein affect viral replication in vitro and VZV virulence in dermal and epidermal cells and T cells within intact tissue microenvironments in vivo.  相似文献   

6.
The protein product of varicella-zoster virus (VZV) ORF47 is a serine/threonine protein kinase and tegument component. Evaluation of two recombinants of the Oka strain, rOka47DeltaC, with a C-terminal truncation of ORF47, and rOka47D-N, with a point mutation in the conserved kinase motif, showed that ORF47 kinase function was necessary for optimal VZV replication in human skin xenografts in SCID mice but not in cultured cells. We now demonstrate that rOka47DeltaC and rOka47D-N mutants do not infect human T-cell xenografts. Differences in the growth of kinase-defective ORF47 mutants allowed an examination of requirements for VZV pathogenesis in skin and T cells in vivo. Although virion assembly was reduced and no virion transport to cell surfaces was observed, epidermal cell fusion persisted, and VZV polykaryocytes were generated by rOka47DeltaC and rOka47D-N in skin. Virion assembly was also impaired in vitro, but VZV-induced cell fusion continued to cause syncytia in cultured cells infected with rOka47DeltaC or rOka47D-N. Intracellular trafficking of envelope glycoprotein E and the ORF47 and IE62 proteins, components of the tegument, was aberrant without ORF47 kinase activity. In summary, normal VZV virion assembly appears to require ORF47 kinase function. Cell fusion was induced by ORF47 mutants in skin, and cell-cell spread occurred even though virion formation was deficient. VZV-infected T cells do not undergo cell fusion, and impaired virion assembly by ORF47 mutants was associated with a complete elimination of T-cell infectivity. These observations suggest a differential requirement for cell fusion and virion formation in the pathogenesis of VZV infection in skin and T cells.  相似文献   

7.
8.
T C Heineman  K Seidel    J I Cohen 《Journal of virology》1996,70(10):7312-7317
Varicella-zoster virus (VZV) open reading frames (ORFs) 47 and 66 encode proteins that are homologous to a family of eukaryotic serine-threonine kinases. Prior studies showed that the VZV ORF47 protein has kinase activity in vitro and is dispensable for replication in cultured cells. To examine the role of the ORF66 protein during infection, we constructed VZV recombinants that are unable to express either the ORF66 protein (ROka 66S) or both the ORF47 and ORF66 proteins (ROka 47S/66S). VZV unable to express ORF66 grew to titers similar to those of the parental VZV (ROka) in vitro; however, VZV lacking both ORF66 and ORF47 grew to titers lower than those of ROka. Nuclear extracts from ROka 66S- or ROka 47S-infected cells showed a 48-kDa phosphoprotein(s); a phosphoprotein with a similar size was not present in nuclear extracts from ROka 47S/66S-infected cells. To determine the role of the ORF66 protein in the phosphorylation of specific VZV-encoded proteins, we immunoprecipitated known VZV phosphoproteins (ORF4, ORF62, ORF63, and ORF68 proteins) from nuclear extracts of phosphate-labeled cells infected with ROka, ROka 66S, or ROka 47S/66S. Each of the VZV phosphoproteins was phosphorylated to a similar extent in the presence or absence of either the ORF66 protein or both the ORF66 and ORF47 proteins. From these studies we conclude (i) neither ORF66 alone nor ORF66 and ORF47 in combination are essential for VZV growth in cultured cells, (ii) ORF66 either is a protein kinase or induces protein kinase activity during infection, and (iii) the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 do not require either ORF66 alone or ORF66 and ORF47 for phosphorylation in vitro.  相似文献   

9.
To investigate the role of the ORF47 protein kinase of varicella-zoster virus (VZV), we constructed VZV recombinants with targeted mutations in conserved motifs of ORF47 and a truncated ORF47 and characterized these mutants for replication, phosphorylation, and protein-protein interactions in vitro and for infectivity in human skin xenografts in the SCID-hu mouse model in vivo. Previous experiments showed that ROka47S, a null mutant that makes no ORF47 protein, did not replicate in skin in vivo (J. F. Moffat, L. Zerboni, M. H. Sommer, T. C. Heineman, J. I. Cohen, H. Kaneshima, and A. M. Arvin, Proc. Natl. Acad. Sci. USA 95:11969-11974, 1998). The construction of VZV recombinants with targeted ORF47 mutations made it possible to assess the effects on VZV infection of human skin xenografts of selectively abolishing ORF47 protein kinase activity. ORF47 mutations that resulted in a C-terminal truncation or disrupted the DYS kinase motif eliminated ORF47 kinase activity and were associated with extensive nuclear retention of ORF47 and IE62 proteins in vitro. Disrupting ORF47 kinase function also resulted in a marked decrease in VZV replication and cutaneous lesion formation in skin xenografts in vivo. However, infectivity in vivo was not blocked completely as long as the capacity of ORF47 protein to bind IE62 protein was preserved, a function that we identified and mapped to the N-terminal domain of ORF47 protein. These experiments indicate that ORF47 kinase activity is of critical importance for VZV infection and cell-cell spread in human skin in vivo but suggest that it is the formation of complexes between ORF47 and IE62 proteins, both VZV tegument components, that constitutes the essential contribution of ORF47 protein to VZV replication in vivo.  相似文献   

10.
Varicella-zoster virus (VZV) glycoprotein I (gI) is dispensable in cell culture; the SCIDhu model of VZV pathogenesis was used to determine whether gI is necessary in vivo. The parental and repaired viruses grew in human skin and thymus/liver implants, but the gI deletion mutant was not infectious. Thus, gI is essential for VZV infectivity in skin and T cells.  相似文献   

11.
Varicella-zoster virus (VZV) is the causative agent of chickenpox and herpes zoster (shingles). After the primary infection, the virus remains latent in sensory ganglia and reactivates upon weakening of the cellular immune system due to various conditions, erupting from sensory neurons and infecting the corresponding skin tissue. The current varicella vaccine is highly attenuated in the skin and yet retains its neurovirulence and may reactivate and damage sensory neurons. The factors involved in neuronal invasion and establishment of latency are still elusive. Previously, we constructed a library of whole-gene deletion mutants carrying a bacterial artificial chromosome sequence and a luciferase marker in order to perform a comprehensive VZV genome functional analysis. Here, screening of dispensable gene deletion mutants in differentiated neuronal cells led to the identification of ORF7 as the first known, likely a main, VZV neurotropic factor. ORF7 is a virion component localized to the Golgi compartment in infected cells, whose deletion causes loss of polykaryon formation in epithelial cell culture. Interestingly, ORF7 deletion completely abolishes viral spread in human nervous tissue ex vivo and in an in vivo mouse model. This finding adds to our previous report that ORF7 is also a skin-tropic factor. The results of our investigation will not only lead to a better understanding of VZV neurotropism but could also contribute to the development of a neuroattenuated vaccine candidate against shingles or a vector for delivery of other antigens.  相似文献   

12.
13.
14.
15.
Open reading frame 4 (ORF4) of varicella-zoster virus (VZV) encodes an immediate-early protein that is believed to be important for viral infectivity and establishing latency. Evidence suggests that VZV-specific T cells are crucial in the control of viral replication, but there are no data addressing the existence of potential ORF4 protein-specific CD4+ T cells. We tested the hypothesis that VZV ORF4 protein-specific CD4+ T cells could be identified and characterized within the peripheral blood of healthy immune donors following primary infection. Gamma interferon (IFN-gamma) immunosorbent assays were used to screen peripheral blood mononuclear cells obtained from healthy seropositive donors for responses to overlapping ORF4 peptides, viral lysate, and live vaccine. High frequencies of ORF4 protein-specific T cells were detected ex vivo in individuals up to 52 years after primary infection. Several immunogenic regions of the ORF4 protein were identified, including a commonly recognized epitope which was restricted through HLA-DRB1*07. Total ORF4 protein-specific responses comprised 19.7% and 20.7% of the total lysate and vaccine responses, respectively, and were dominated by CD4+ T cells. Indeed, CD4+ T cells were found to dominate the overall virus-specific IFN-gamma cellular immune response both ex vivo and after expansion in vitro. In summary, we have identified an ORF4 protein as a novel target antigen for persistent VZV-specific CD4+ T cells, with implications for disease pathogenesis and future vaccine development.  相似文献   

16.
The ORF29 gene of varicella-zoster virus encodes a single-stranded DNA binding protein that is predominantly nuclear during lytic infection but appears to be restricted to the cytoplasm of latently infected neurons. Following reactivation, ORF29p accumulates in the nuclei of neurons, suggesting that its confinement to the cytosol may be critical for maintaining quiescence. When autonomously expressed, ORF29p accumulates in the nuclei of fibroblasts and the cytoplasm of cells (guinea pig enteric neurons) and cell lines (U373MG) of neuronal origin. Inhibition of the 26S proteasome redirects the accumulation of ORF29p to the nucleus in cells of neuronal origin. Here, we show that ORF29p is ubiquitinated and sumoylated in 293T cells and subsequently degraded from the N terminus. Ubiquitinated ORF29p accumulates in both the nuclei and the cytoplasm of fibroblasts, but degradation products are seen primarily in the cytoplasm. Modification and degradation of ORF29p occurs in 293T, U373MG, and MeWo cells. Therefore, these processes are ubiquitous; however, the robustness of the degradation process is cell type specific. The proteasome-mediated mechanism of nuclear exclusion in U373MG cells is an active process that is not specific for the endogenous ORF29p nuclear localization signal but can be saturated by protein stabilization or overexpression, which leads to nuclear accumulation of ORF29p. The evidence for ORF29p ubiquitination and previous data regarding the effect of proteasome inhibitors on the abundance and distribution of ORF29p implicate the 26S proteasome in influencing the protein's cell type-specific localization.  相似文献   

17.
We generated an ORF65 deletion mutant by using a cosmid system constructed from the genome of a low-passage clinical isolate (P-Oka). Using the SCID-hu mouse model, we demonstrated that the ORF65 protein is dispensable for viral replication in skin and T cells, which are critical host cell targets during primary varicella-zoster virus infection.  相似文献   

18.
Varicella-zoster virus (VZV) is a highly species-specific member of the Herpesviridae family. The virus exhibits multiple cell tropisms, infecting peripheral blood mononuclear cells and skin cells before establishing latency in sensory neurons. Such tropisms are essential both for primary infection, which manifests itself as chickenpox (varicella), and subsequent reactivation to cause herpes zoster (shingles). The highly cell-associated nature of the virus, coupled with its narrow host range, has resulted in the lack of an animal model that mimics its diseases in humans, thereby greatly hindering the study of events in VZV pathogenesis. Despite this, extensive studies both in vitro and in vivo in small-animal models have provided a fascinating insight into molecular events that govern VZV diseases. In addition, VZV has become the first human herpes virus for which a live attenuated vaccine has been developed.  相似文献   

19.
Although genes related to varicella-zoster virus (VZV) open reading frame 35 (ORF35) are conserved in the herpesviruses, information about their contributions to viral replication and pathogenesis is limited. Using a VZV cosmid system, we deleted ORF35 to produce two null mutants, designated rOkaDelta35(#1) and rOkaDelta35(#2), and replaced ORF35 at a nonnative site, generating two rOkaDelta35/35@Avr mutants. ORF35 Flag-tagged recombinants were made by inserting ORF35-Flag at the nonnative Avr site as the only copy of ORF35, yielding rOkaDelta35/35Flag@Avr, or as a second copy, yielding rOka35Flag@Avr. Replication of rOkaDelta35 viruses was diminished in melanoma and Vero cells in a 6-day analysis of growth kinetics. Plaque sizes of rOkaDelta35 mutants were significantly smaller than those of rOka in melanoma cells. Infection of melanoma cells with rOkaDelta35 mutants was associated with disrupted cell fusion and polykaryocyte formation. The small plaque phenotype was not corrected by growth of rOkaDelta35 mutants in melanoma cells expressing the major VZV glycoprotein E, gE. The rOkaDelta35/35@Avr viruses displayed growth kinetics and plaque morphologies that were indistinguishable from those of rOka. Analysis with ORF35-Flag recombinants showed that the ORF35 gene product localized predominantly to the nuclei of infected cells. Evaluations in the SCIDhu mouse model demonstrated that ORF35 was required for efficient VZV infection of skin and T-cell xenografts, although the decrease in infectivity was most significant in skin. These mutagenesis experiments indicated that ORF35 was dispensable for VZV replication, but deleting ORF35 diminished growth in cultured cells and was associated with attenuated VZV infection of differentiated human skin and T cells in vivo.  相似文献   

20.
Taylor SL  Moffat JF 《Journal of virology》2005,79(17):11501-11506
Varicella-zoster virus (VZV) infection is restricted to humans, which hinders studies of its pathogenesis in rodent models of disease. To facilitate the study of VZV skin tropism, we developed an ex vivo system using human fetal skin organ culture (SOC). VZV replication was analyzed by plaque assay, transmission electron microscopy, and histology. The yield of infectious VZV from SOC increased approximately 100-fold over 6 days, virions were abundant, and lesions developed that contained VZV antigens and resembled varicella and zoster lesions. The SOC system for VZV replication has applications for testing virus mutants and antiviral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号