首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One hundred and eighty five samples of red, white and rosé wines and different juices purchased in Entre Rios, Argentina, were analyzed for the Alternaria mycotoxins alternariol (AOH) and alternariol methyl ether (AME). White wines were analyzed after removal of alcohol by a nitrogen stream and concentrated. AOH in red wines was cleaned up by solid-phase extraction columns in series (octadecyl and amino propyl modified silica) and AME quantified directly on the sample. The juices were filtered and concentrated, and then all sample extracts were quantified by high performance liquid chromatography with photodiode array detector that allows confirmation through UV spectra. Method validation revealed a good sensitivity with adequate LOD and LOQ for AME and less sensitivity for AOH (i.e. white wine: AME 0.8 and 1.4 ng/mL, AOH 2 and 3.3 ng/mL; red wine: AME 0.1 and 0.2 ng/mL, AOH 4.5 and 7.5 ng/mL; apple juice: AME 1.7 and 2.8 ng/mL, AOH 5 and 9 ng/mL; other juices: AME 2.0 and 3.1 ng/mL, AOH 6 and 10 ng/mL). Recoveries in all cases were greater than 80 %. Four of 53 white wine samples were contaminated with AOH with a maximum level of 18 ng/mL, 6 of 56 samples of red wine had a maximum of 13 ng/mL, and 3 of 68 samples of juices had traces of AOH. AME was less frequently detected than AOH, and the LOD and LOQ for AME are smaller than for AOH. Only three samples of white wine and one of red wine were contaminated, but in only one white wine sample (AME 225 ng/mL) did the toxin level exceed the LOQ.  相似文献   

2.
The occurrence ofAlternaria mycotoxins was investigated in 80 samples of tomato puree processed and sold in Argentina. Alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) were searched for by liquid chromatography. Thirty-nine of the 80 samples showed mycotoxin contamination. TA was found in 23 samples (39-4021 μg/kg), AOH in 5 samples (187-8756 μg/kg), and AME in 21 samples (84-1734 μg/kg). Co-occurrence of two of these toxins was detected in 10 samples. This is the first report of natural occurrence of AOH, AME and TA in tomato products in Argentina.  相似文献   

3.
Alternaria alternata is a common fungal parasite on fruits and other plants and produces a number of mycotoxins, including alternariol (3,7,9-trihydroxy-1-methyl-6H-dibenzo [b,d]pyran-6-one), alternariol monomethyl ether (3,7-dihydroxy-9-methoxy-1-methyl-6H-dibenzo[b,d]pyran-6-one), and the mutagen altertoxin I {[1S-(1α,12aβ,12bα)] 1,2,11,12,12a, 12b-hexahydro-1,4,9,12a-tetrahydroxy-3,10-perylenedione}. Alternariol and alternariol monomethyl ether have previously been detected in some samples of fruit beverages. Stability studies of these toxins as well as altertoxin I added to fruit juices and wine (10–100 ng/mL) were carried out. To include altertoxin I in the analysis, cleanup with a polymer-based Varian Abselut solid phase extraction column was used, as recoveries from C-18 columns were low. The stabilities of alternariol and alternariol monomethyl ether in a low acid apple juice containing no declared vitamin C were compared with those in the same juice containing added vitamin C (60 mg/175 ml); there were no apparent losses at room temperature over 20 days or at 80°C after 20 min. in either juice. Altertoxin I was moderately stable in pH 3 buffer (75% remaining after a two week period). Furthermore, altertoxin I was stable or moderately stable in three brands of apple juice tested over 1–27 day periods and in a sample of red grape juice over 7 days. It is concluded that altertoxin I is sufficiently stable to be found in fruit juices and should be included in methods for alternariol and alternariol monomethyl ether.  相似文献   

4.
Cereal, fruit and vegetable products were analyzed for contamination with the Alternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) using stable isotope dilution assays (SIDAs). Both toxins were practically not detected in cereals and cereal products: AOH—one out of 13 samples at a content of 4.1 μg/kg; AME—two out of 13 samples at contents ranging between 0.2 and 0.6 μg/kg. However, if cereals for animal nutrition were analyzed, much higher values were found: AOH—five out of six samples (13–250 μg/kg); AME—six out of six samples (3–100 μg/kg). This finding may pose a potential problem concerning animal health. AOH and AME were frequently detected in vegetable products: AOH—5 out of 10 samples (2.6–25 μg/kg); AME—6 out of 10 samples (0.1–5 μg/kg). Tomato products were affected, especially. The highest content of AOH (25 μg/kg) and AME (5 μg/kg) were found in triple concentrated tomato paste. Special wines like “Trockenbeerenauslese” or “Spätlese” (affected by noble rot in the vineyard) contained AOH (4/6 samples; 1.2–4.9 μg/kg) and AME (4/6 samples; 0.1–0.3 μg/kg), but the values did not exceed the values of both toxins that were found generally in wines.  相似文献   

5.
Alternaria alternata has been reported to be the most common fungus on Canadian Western wheat. The Alternaria toxins alternariol (AOH) and alternariol monomethyl ether (AME) are mutagenic in vitro and there is also limited evidence for carcinogenic properties. They have been found in wheat from Europe, Argentina, China and Australia, but they have not been looked for in Canadian grains or grain foods. In the present study, 83 samples of grain-based food sold in Canada, including flour, bran, breakfast cereals, infant cereals and bread, were analysed for AOH and AME using extraction with methanol, clean-up on combined aminopropyl/C18 solid phase extraction (SPE) columns, and liquid chromatography (LC) with tandem mass spectrometric (MS/MS) determination. The overall average recoveries of AOH and AME from a variety of spiked cereal foods (n?=?13) were 45?±?9?% and 53?±?9?%, which could be attributed mainly to MS matrix effects The instrumental limits of detection (LOD) were 0.34?ng/g and 0.13?ng/g for AOH and AME, respectively, and the instrumental limits of quantitation (LOQ) were 1.1 and 0.43?ng/g. Of 83 samples analysed, 70 were positive for AOH (up to 63?ng/g, in a soft wheat bran) and 64 contained AME (up to 12?ng/g in a bran-based breakfast cereal). Of particular interest was the presence of AOH and/or AME in 27 out of 30 infant foods (up to 4.4?ng/g and 9.0?ng/g, respectively, in a sample of multigrain cereal).  相似文献   

6.
The comparison In toxins production and growth byAlternarla strains in liquid, solid culture media and natural substrates (rice and sunflower) was evaluated. Ground rice- corn steep liquor medium (GRCS) was the more suitable medium for production of alternariol (AOH) and alternariol monomethyl ether(AME). The maximum levels produced were 676 μg/50ml AOH and 1570/50ml AME. Rice was better than sunflower In supporting toxins production. Different ratios AOH/AME were found according to the substrate evaluated.  相似文献   

7.
A study was carried out to evaluate the effect of heat treatment on the stability of alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) in sunflower flour and the effectiveness of this treatment by a biological assay in rats. The concentrations of AOH and AME remained constant during heating at 100°C for up to 90 minutes while TeA concentration decreased with time to 50% after 90 minutes. The most effective treatment in reducing AOH and AME levels was heating at 121°C for 60 minutes. Histopathological evaluation in the biological assay in rats fed withAlternaria toxins showed marked atrophy and fusion of villi in the intestines and liver cell damage; these lesions were less severe in rats fed heat-treated sunflower flour in line with the reduced toxin content. However, a lower weight gain and a noticeable renal damage in rats were produced when they fed decontaminated flour.  相似文献   

8.
The natural occurrence of alternariol (AOH) and alternariol monomethyl ether (AME) in soya beans harvested in Argentina was evaluated. Both toxins were simultaneously detected by using HPLC analysis coupled with a solid phase extraction column clean-up. Characteristics of this in-house method such as accuracy, precision and detection and quantification limits were defined by means of recovery test with spiked soya bean samples. Out of 50 soya bean samples, 60% showed contamination with the mycotoxins analyzed; among them, 16% were only contaminated with AOH and 14% just with AME. Fifteen of the positive samples showed co-occurrence of both mycotoxins analyzed. AOH was detected in concentrations ranging from 25 to 211?ng/g, whereas AME was found in concentrations ranging from 62 to 1,153?ng/g. Although a limited number of samples were evaluated, this is the first report on the natural occurrence of Alternaria toxins in soya beans and is relevant from the point of view of animal public health.  相似文献   

9.
TheAlternaria toxins alternariol (AOH), alternariol-9-methyl ether (AME), altenuene (ALT) and isoaltenuene (iALT) undergo extensive oxidative metabolism, but the cytochrome P450 (CYP) isoforms responsible for the reported hydroxylation reactions are yet unknown. In the present study, the activities of twelve human CYP isoforms for the hydroxylation of AOH, AME, ALT and iALT at different positions have been determined. The most active monooxygenase for AOH and AME was CYP1A1, and lower activities were observed for CYP1A2, 2C19 and 3A4. Hydroxylation at C-2 of AOH and AME was the preferred reaction of most isoforms. For ALT and iALT, CYP2C19 had the highest activity, followed by 2C9 and 2D6. The dominating metabolite of all active isoforms was the 8-hydroxylated ALT and iALT. The activities of the CYP isoforms are consistent with the pattern of metabolites of theAlternaria toxins obtained with pooled human hepatic microsomes. Based on the activities of the CYP isoforms, a significant extrahepatic hydroxylation must be expectede.g. in the lung and esophagus for AOH and AME, and in the intestine and ovaries for ALT and iALT. As all major hydroxylation products are catechols, the extrahepatic metabolism ofAlternaria toxins may be of toxicological relevance. Presented at the 30th Mycotoxin Workshop, Utrecht, Netheriands, April 28–30. 2008. Financial support: State of Baden-Württemberg (Research Program “Mycotoxins” as part of the Research Initiative “Food and Health”)  相似文献   

10.
The fatty acid synthase inhibitor cerulenin (50 to 100 micrograms/ml) inhibited production of the polyketide mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) by the mold Alternaria alternata. The results suggested that AOH synthesis was inhibited by a direct mechanism by cerulenin, whereas production of AME was probably limited by a shortage of the precursor AOH.  相似文献   

11.
The fatty acid synthase inhibitor cerulenin (50 to 100 micrograms/ml) inhibited production of the polyketide mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) by the mold Alternaria alternata. The results suggested that AOH synthesis was inhibited by a direct mechanism by cerulenin, whereas production of AME was probably limited by a shortage of the precursor AOH.  相似文献   

12.
Treatment, for 1 h, of cultured Chinese hamster V79 cells, human liver HepG2 cells, and human colon HT-29 cells with theAlternaria toxins alternariol (AOH) and alternariol methyl ether (AME) caused a concentration-dependent induction of DNA strand breaks at concentrations ranging from 5 to 50 micromolar. After treatment for 24 h, DNA strand breaks were observed in HepG2 but not HT-29 cells. Analysis of the 24 h-incubation media of HT-29 cells showed that both toxins were completely conjugated, whereas 75% were still present as unconjugated compounds in the 24 h-media of HepG2 cells. Lysates of both cell types fortified with UDPGA were found to convert both toxins into two glucuronides each, but HT-29 cells exhibited a much high activity than HepG2 cells and gave rise to a different ratio of glucuronides. It is concluded that glucuronidation eliminates the DNA strandbreaking potential of AOH and AME, and that the two glucuronides of eachAlternaria toxin are generated by different UGT isoforms. Presented at the 29th Mykotoxin-Workshop, Fellbach, Germany, May 14–16, 2007 Financial support: State of Baden-Württemberg (Research Program “Mycotoxins” as part of the Research Initiative “Food and Health”)  相似文献   

13.
Both water activity (aW) and temperature affected the production of altenuene (AE), alternariol (AOH), and alternariol monomethyl ether (AME) by Alternaria alternata on wheat extract agar and wheat grain. Greatest production of all three mycotoxins occurred at 0.98 aW and 25 degrees C on both substrates. At 0.98 aW and 25 degrees C, a single colony of A. alternata grown on wheat extract agar produced 807 micrograms of AOH, 603 micrograms of AME, and 169 micrograms of AE ml in 30 days. However, production of all three mycotoxins at 0.95 aW was less than 40% of these amounts. Little toxin was produced at 0.90 aW. Changing temperature and aW altered the relative amounts of the different toxins produced on agar. At 15 degrees C and 0.98 aW, maxima of 52 micrograms of AOH and 25 micrograms of AME per ml were produced after 15 and 30 days, respectively, whereas AE continued to increase and reached 57 micrograms/ml after 40 days. At 15 degrees C and 0.95 aW, production was, respectively, 62, 10, and 5 micrograms/ml after 40 days. All three metabolites were produced at 5 degrees C and 0.98 to 0.95 aW and at 30 degrees C and 0.98 to 0.90 aW. On wheat grain at 25 degrees C and 0.98 to 0.95 aW, more AME was produced than AOH or AE, but at 15 degrees C there was less AME than AOH or AE. Only trace amounts of AE, AOH, and AME were found at 15 to 25 degrees C and 0.90 aW, but production of AME was inhibited at 30 degrees C and 0.95 aW or less.  相似文献   

14.
A total of 181 wheat flour and 142 wheat-based foods including dried noodle, steamed bread and bread collected in China were analyzed for alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN) and tenuazonic acid (TeA) by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. TeA was the predominant toxin found in 99.4% wheat flour samples at levels ranging from 1.76 μg/kg to 520 μg/kg. TEN was another Alternaria toxin frequently detected in wheat flour samples (97.2%) at levels between 2.72 μg/kg and 129 μg/kg. AOH and AME were detected in 11 (6.1%) samples at levels ranging from 16.0 μg/kg to 98.7 μg/kg (AOH) and in 165 (91.2%) samples with a range between 0.320 μg/kg and 61.8 μg/kg (AME). AOH was quantified at higher levels than AME with the ratio of AOH/AME ranging from 1.0 to 3.7. Significant linear regressions of correlation in toxin concentrations were observed between AOH and AME, AME and TeA, TEN and TeA, AOH+AME and TeA. At an average and 95th percentile, dietary exposure to AOH and AME in the Chinese general population and different age subgroups exceeded the relevant threshold value of toxicological concern (TTC), with the highest exposure found in children which deserves human health concern. TEN and TeA seem unlikely to be health concerns for the Chinese via wheat-based products but attention should be paid to synergistic or additive effects of TeA with AOH, AME, TEN and a further assessment will be performed once more data on toxicity-guided fractionation of the four toxins are available. It is necessary to conduct a systemic surveillance of Alternaria toxins in raw and processed foods in order to provide the scientific basis for making regulations on these toxins in China.  相似文献   

15.
N Magan  G R Cayley    J Lacey 《Applied microbiology》1984,47(5):1113-1117
Both water activity (aW) and temperature affected the production of altenuene (AE), alternariol (AOH), and alternariol monomethyl ether (AME) by Alternaria alternata on wheat extract agar and wheat grain. Greatest production of all three mycotoxins occurred at 0.98 aW and 25 degrees C on both substrates. At 0.98 aW and 25 degrees C, a single colony of A. alternata grown on wheat extract agar produced 807 micrograms of AOH, 603 micrograms of AME, and 169 micrograms of AE ml in 30 days. However, production of all three mycotoxins at 0.95 aW was less than 40% of these amounts. Little toxin was produced at 0.90 aW. Changing temperature and aW altered the relative amounts of the different toxins produced on agar. At 15 degrees C and 0.98 aW, maxima of 52 micrograms of AOH and 25 micrograms of AME per ml were produced after 15 and 30 days, respectively, whereas AE continued to increase and reached 57 micrograms/ml after 40 days. At 15 degrees C and 0.95 aW, production was, respectively, 62, 10, and 5 micrograms/ml after 40 days. All three metabolites were produced at 5 degrees C and 0.98 to 0.95 aW and at 30 degrees C and 0.98 to 0.90 aW. On wheat grain at 25 degrees C and 0.98 to 0.95 aW, more AME was produced than AOH or AE, but at 15 degrees C there was less AME than AOH or AE. Only trace amounts of AE, AOH, and AME were found at 15 to 25 degrees C and 0.90 aW, but production of AME was inhibited at 30 degrees C and 0.95 aW or less.  相似文献   

16.
A HPLC-MS/MS-based method for the quantification of nine mycotoxins produced by fungi of the genus Alternaria in various food matrices was developed. The method relies on a single-step extraction, followed by dilution of the raw extract and direct analysis. In combination with an analysis time per sample of 12 min, the sample preparation is cost-effective and easy to handle. The method covers alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), altenuene (ALT), iso-altenuene (isoALT), tentoxin (TEN), altertoxin-I (ATX-I), and the AAL toxins TA1 and TA2. Some Alternaria toxins which are either not commercially available or very expensive, namely AOH, AME, ALT, isoALT, and ATX-I, were isolated as reference compounds from fungal cultures. The method was extensively validated for tomato products, bakery products, sunflower seeds, fruit juices, and vegetable oils. AOH, AME, TeA, and TEN were found in quantifiable amounts and 92.1 % of all analyzed samples (n?=?96) showed low level contamination with one or more Alternaria toxins. Based on the obtained results, the average daily exposure to Alternaria toxins in Germany was calculated.  相似文献   

17.
Ochratoxin A (OTA) is a mycotoxin mainly produced by a number of species of Aspergillus, commonly found in warm and tropical climates. OTA poses risks for the human health because of its nephrotoxic, teratogenic, immunotoxic and neurotoxic activity. The mycotoxin, classified as possible human carcinogen (Group 2B) by the IARC, naturally occurs in a wide range of foods, including wine, where the main producer is A. carbonarius. The aim of this work was the validation of a procedure for the analysis of OTA in Piedmontese red and white wines produced after vintage 2003 and 2004, in relationship with the limit of 2.0 microg l(-1) introduced by European Union for wine, must or grape juice (Regulation CE N. 123/2005). An analytical method based on immunoaffinity column (IAC) for clean-up and liquid chromatography with fluorescence detection (LC-FLD) was used to determine the occurrence of OTA in wines. Detection limit (LOD) and quantification Limit (LOQ) were 7.18 pg/ml and 9.31 pg/ml based on statistical method (IUPAC). Average recoveries of OTA from wine samples spiked at levels from 0.1 to 10 ng/ml ranged from 90.8% to 92.4%, with relative standard deviations (RSDs) between 2.64 and 2.71%. Repeatability limit was 8.73 pg/ml for samples spiked with 0.1 ng/ml of OTA. Ninety-one Denomination of Controlled Origin (DOC) wines were analysed, including 41 Barbera (red), 38 Dolcetto (red), and 16 white wines, such as Erbaluce, Cortese and Roero Arneis. The study focused on wines commercialized in Italian supermarkets and wine shops. The white wines resulted, as expected, less contaminated than the red ones. Wines produced after vintage 2003, a season particularly conducive to the growth of A. carbonorius, contained higher levels of OTA than the wines produced in 2004. The samples, resulting positive, contained a concentration of OTA highly inferior to the threshold limits introduced by the European Union. The sample of the highest level of OTA was a Dolcetto produced in 2004, with 1.10 ng/ml of mycotoxin.  相似文献   

18.
The distribution of mutagenic activity in red, rose and white wines   总被引:1,自引:0,他引:1  
Using a modified Salmonella typhimurium TA98 Ames-test system, more than 150 red, white and rose wines were analyzed for direct-acting and microsomal enzyme-enhanced mutagenic activity. The following conclusions were reached from analysis of this wine mutagenicity data base. White and rose wines, as well as grape juices, exhibited little or no detectable direct-acting or microsomal enzyme-enhanced mutagenic activity. However, red wine samples contained highly variable amounts of mutagens, ranging from undetectable to levels 30-fold above the sensitivity limit of the assay system. The variations in red wine mutagenicity were unrelated to grape variety, vintage, aging methods or production region. Hence, individual winery production practices must represent the most significant contribution to the variations observed.  相似文献   

19.
本文对分离自小麦、马铃薯、番茄和茄子上链格孢霉属(Alternaria)2个种(链格孢和茄链格孢)的96个菌株,用枯草杆菌生长抑制试验筛选链格孢霉醇(AOH)和链格孢霉醇单甲醚(AME)的产生菌株,有48株产生毒性作用(占所测菌株的50%)。18株产强、中毒性菌用高效液相色谱分析,有13株产AOH和AME(占所测菌株的72.2%)。链格孢的产毒素菌株率比茄链格孢低。但产毒素含量却是前者明显高于后者。其中产AOH和AME的最高含量,链格孢菌株XA-8分别为280和5140mg/kg,而茄链格孢菌株SA-10分别为95.9和94.3mg/kg。  相似文献   

20.
BAPTA free acid was identified as the main metabolic product of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(actoxymethyl ester) (BAPTA-AM), a neuroprotective agent in cerebral ischemia, in rats. In this paper, liquid chromatography-ultraviolet (LC-UV) and mass spectrometry/mass spectrometry (LC-MS/MS) methods were employed for the determination of BAPTA free acid in rat urine and feces and rat plasma, respectively. By liquid-liquid extraction and LC-UV analysis, a limit of quantitation of 1000 ng/ml using 0.2 ml rat urine for extraction and 250 ng/ml using 1 ml rat fecal homogenate supernatant for extraction could be reached. The assay was linear in the range of 1000-50,000 ng/ml for rat urine and 250-10,000 ng/ml for rat fecal homogenate supernatant. Because the sensitivity of the LC-UV method was apparently insufficient for evaluating the pharmacokinetic profile of BAPTA in rat plasma, a LC-MS/MS method was subsequently developed for the analysis of BAPTA free acid. By protein precipitation and LC-MS/MS analysis, the limit of quantitation was 5 ng/ml using 0.1 ml rat plasma and the linear range was 5.0-500 ng/ml. Both methods were validated and can be used to support a thorough preclinical pharmacokinetic evaluation of BAPTA-AM liposome injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号