首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffraction of X-rays is recorded from barium stearate multilayer systems with from 2 to 60 double layers or unit cells. The generalized Patterson function P′(x) is calculated by an integral Fourier transform of observed intensity data from a specimen containing only two unit cells. The Patterson function P0(x) of a single unit cell is determined from P′(x) and the electron density distribution of a bimolecular leaflet is obtained by a deconvolution procedure of P0(x) after Hosemann and Bagchi. The electron density distribution is also calculated independently by a conventional Fourier synthesis with an experimentally established set of phases. The results of the two methods are consistent and fit a physical model of the bimolecular leaflet. A direct analysis, therefore, can be performed if diffraction is observed from multilayer systems with a small number of unit cells.  相似文献   

2.
Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it “functional demyelination”, a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP.  相似文献   

3.
The diffraction patterns of particles which have the shape of hollow spheres, i.e. vesicles, can be satisfactorily analyzed by means of a new formula of Weick (1974). This formula is used for the small angle X-ray scattering analysis of aqueous suspensions of thylakoids of Rhodopseudomonas spheroides. Some essential results are: (a) The membrane has a rather asymmetric structure with one layer of low electron density at its inner side and two layers of high electron density near the outer surface of the thylakoids. (b) The distance of the electron density maxima of the latter two layers is 45 ± 5 Å. (c) Between the two maxima is a region of an electron density nearly equal to that of water. (d) The sequence of the peaks is - + 0 + with increasing radius. The peaks extend over an interval of 120 ± 10 Å. (e) The thylakoids are strikingly of the same size. Their diameters, if defined by the outmost layer, vary statistically by about 4% and have an average value of approximately 640 Å.  相似文献   

4.
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.  相似文献   

5.
1. A close correlation has been obtained between high resolution electron microscopy and low-angle x-ray diffraction studies of the myelin sheath of frog and rat peripheral and central nerves. Extensive studies were performed by application of both techniques to the same specimens, prepared for examination by OsO4 or KMnO4 fixation, and embedding either in methacrylate or in gelatin employing a new procedure. Controlled physical and chemical modifications of the myelin sheath prior to fixation were also investigated. 2. A correspondence was established between the layer spacings observed in electron micrographs and the fundamental radial repeating unit indicated by the low-angle x-ray diffraction patterns. The variations in relative intensities of the low-angle x-ray reflections could be related to the radial density distributions seen in the electron micrographs. 3. An analysis of the preparation procedures revealed that OsO4 fixation introduces a greater shrinkage of the layer spacings and more pronounced changes in the density distribution within the layers than KMnO4 fixation. The effects of methacrylate and gelatin embedding are described, and their relative merits considered in relation to the preservation of myelin structure by OsO4 fixation. 4. The experimental modifications introduced by freezing and thawing of fresh whole nerve are described, particularly the enhancement of the intermediate lines and the dissociation of the layer components in the myelin sheath. A characteristic collapsing of the radial period of the sheath is observed after subjecting fresh nerve trunks to prolonged and intense ultracentrifugation. 5. Controlled extraction of fresh nerve with acetone at 0°C., which preferentially removes cholesterol, produces characteristic, differentiated modifications of the myelin sheath structure. Electron microscopy reveals several types of modifications within a single preparation, including both expanded and collapsed layer systems, and internal rearrangements of the layer components. Alcohol extraction leads to a more extensive structural breakdown, but in certain areas collapsed layer systems can still be observed. The components of the lipide extracts could be identified by means of x-ray diffraction. These modifications emphasize the importance of cholesterol in the myelin structure, and disclose a resistance of the dense osmiophilic lines to lipide solvents. 6. The significance of these structures is discussed in relation to present concepts of the molecular organization of myelin. The available evidence is consistent with the suggestion that the primary site of osmium deposition is at the lipoprotein interfaces and that the light bands probably represent regions occupied by lipide chains. The electron microscope and x-ray diffraction data also indicate the possibility of a regular organization within the plane of the layers, probably involving units of 60 to 80 A. The myelin sheath is regarded as a favourable cell membrane model for detailed analysis by combined application of x-ray diffraction and electron microscopy.  相似文献   

6.
About 10% of cancer cells employ the “alternative lengthening of telomeres” (ALT) pathway instead of re‐activating the hTERT subunit of human telomerase. The hTR RNA subunit is also abnormally silenced in some ALT+ cells not expressing hTERT, suggesting a possible negative non‐canonical impact of hTR on ALT. Indeed, we show that ectopically expressed hTR reduces phosphorylation of ssDNA‐binding protein RPA (p‐RPAS33) at ALT telomeres by promoting the hnRNPA1‐ and DNA‐PK‐dependent depletion of RPA. The resulting defective ATR checkpoint signaling at telomeres impairs recruitment of the homologous recombination protein, RAD51. This induces ALT telomere fragility, increases POLD3‐dependent C‐circle production, and promotes the recruitment of the DNA damage marker 53BP1. In ALT+ cells that naturally retain hTR expression, NHP2 H/ACA ribonucleoprotein levels are downregulated, likely in order to restrain DNA damage response (DDR) activation at telomeres through reduced 53BP1 recruitment. This unexpected role of NHP2 is independent from hTR’s non‐canonical function in modulating telomeric p‐RPAS33. Collectively, our study shines new light on the interference between telomerase‐ and ALT‐dependent pathways and unravels a crucial role for hTR and NHP2 in DDR regulation at ALT telomeres.  相似文献   

7.
Kinetics of Perchlorate- and Chlorate-Respiring Bacteria   总被引:3,自引:2,他引:3       下载免费PDF全文
Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated “Dechlorosoma” sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h−1, respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h−1, respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h−1, respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h−1, respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h−1) and exceeded that of strain KJ on perchlorate (0.14 h−1). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 ± 0.07 [n = 7]), chlorate (0.44 ± 0.05 [n = 7]), and perchlorate (0.50 ± 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.  相似文献   

8.
The interpretation of the heavy metal-labeled data can either be accomplished with the analysis of the observed intensity differences (Akers and Parsons) or with the analysis of the observed structure amplitude changes (Harker). Both methods of analysis give essentially the same results: that two possible electron density distributions are valid, within experimental error, depending on whether there are one or two metal-labeling sites within the membrane. At present, the correct choice must rest on either the introduction of additional physical and chemical data on the position of the proteins and lipids or on an independent phasing technique such as the Hosemann-Bagchi Q-function.  相似文献   

9.
A marked increase in the amount of cisternal-like cytoplasmic membranes was observed after ice encasement of winter wheat (Triticum aestivum L.) seedlings. Linear sucrose gradients were employed to separate the various membrane components of the microsomal membrane fraction. NADH- and NADPH-cytochrome c reductase, two specific enzyme markers for plant endoplasmic reticulum (ER) were used to locate the ER in the linear gradients. The identity of the ER fraction was confirmed by determining the effect of EDTA and Mg2+ in the preparative media on the distribution of NADH- and NADPH-cytochrome c reductase activity within the gradient. In the presence of EDTA which dissociates ribosomes from ER, peaks of activity for the two enzymes were observed at a density corresponding to that for “smooth” ER. When the media also contained an appropriate concentration of Mg2+ to maintain the attachment of ribosomes to the ER, the peaks of activity for the enzymes shifted to a density corresponding to that for “rough” ER. NADH-cytochrome c reductase activity was similar for 24 C-grown and 2 C-grown iced seedlings, but significantly lower for 2 C noniced seedlings. No preferential increase in uptake of radioactive leucine or choline in the ER was observed during ice encasement. The accumulation of electron microscopically visible membrane arrays was not inhibited by the presence of protein synthesis inhibitors at concentrations which severely inhibited incorporation of [1-14C]leucine into membrane protein, but did not affect survival and growth of the seedlings. These observations indicate that the apparent proliferation of ER during ice encasement does not result from net membrane synthesis, but rather from reorganization of existing membrane elements within the cell.  相似文献   

10.
BackgroundAccording to the “World Cancer Research Fund” and the “American Institute of Cancer Research” (WCRF/AICR) one in four cancer cases could be prevented through a healthy diet, weight control and physical activity.ObjectiveTo explore the association between the WCRF/AICR recommendations and risk of breast cancer.MethodsDuring the period 2006 to 2011 we recruited 973 incident cases of breast cancer and 973 controls from 17 Spanish Regions. We constructed a score based on 9 of the WCRF/AICR recommendations for cancer prevention:: 1)Maintain adequate body weight; 2)Be physically active; 3)Limit the intake of high density foods; 4)Eat mostly plant foods; 5)Limit the intake of animal foods; 6)Limit alcohol intake; 7)Limit salt and salt preserved food intake; 8)Meet nutritional needs through diet; S1)Breastfeed infants exclusively up to 6 months. We explored its association with BC by menopausal status and by intrinsic tumor subtypes (ER+/PR+ & HER2-; HER2+; ER&PR-&HER2-) using conditional and multinomial logistic models respectively.ResultsOur results point to a linear association between the degree of noncompliance and breast cancer risk. Taking women who met 6 or more recommendations as reference, those meeting less than 3 showed a three-fold excess risk (OR=2.98(CI95%:1.59-5.59)), especially for postmenopausal women (OR=3.60(CI95%:1.24;10.47)) and ER+/PR+&HER2- (OR=3.60(CI95%:1.84;7.05)) and HER2+ (OR=4.23(CI95%:1.66;10.78)) tumors. Noncompliance of recommendations regarding the consumption of foods and drinks that promote weight gain in premenopausal women (OR=2.24(CI95%:1.18;4.28); p for interaction=0.014) and triple negative tumors (OR=2.93(CI95%:1.12-7.63)); the intake of plant foods in postmenopausal women (OR=2.35(CI95%:1.24;4.44)) and triple negative tumors (OR=3.48(CI95%:1.46-8.31)); and the alcohol consumption in ER+/PR+&HER2- tumors (OR=1.52 (CI95%:1.06-2.19)) showed the strongest associations.ConclusionBreast cancer prevention might be possible by following the “World Cancer Research Fund” and the “American Institute of Cancer Research” recommendations, even in settings like Spain, where a high percentage of women already comply with many of them.  相似文献   

11.
Microconidiating cultures of “peach-fluffy” (pe, fl; Y8743m, L; FGSC #569) were fixed at various times after the initiation of growth and examined with an electron microscope. Hyphae from which microconidia form are markedly vacuolated and show a much more extensive system of rough endoplasmic reticulum than young vegetative hyphae. A bulge in the hypha presages the start of microconidium formation, followed by the rupture of the outermost wall layers. A thick collar forms around the protruding microconidium due to extensive thickening of the inner wall layer of the parent hypha. At this stage, the cytoplasm of the developing microconidium is still continuous with that of the microsporophore cell from which it arises and is contained by a wall which is derived from the thickened collar. The microconidium is finally isolated from the cytoplasm of the microsporophore by a centripetal extension of the collar. Microconidia differ from macroconidia in having a more extensive endoplasmic reticulum and fewer mitochondria, in addition to being smaller and having a single nucleus.  相似文献   

12.
A valence electron rule is proposed for the stability of the regular octahedrons of the M6 clusters of high-row representative elements in the singlet states. The 6N + 14 (N = 0-2) valence electrons stabilize the Oh geometry. The 6N + 14 valence electron rule is confirmed by the unrestricted density functional theory calculations at the UB3LYP/6-31+G(d) levels.  相似文献   

13.
Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons.When Virchow analyzed the fine structure of the brain in the 1850s, he recognized that there were more cells within the “Nervenkitt” than astrocytes, but because of the imperfect staining methods, they remained obscure and were only named the “third element” (reviewed in Somjen 1988; Rosenbluth 1999). It was decades later that Pío del Río-Hortega (1921) applied a staining method involving silver carbonate, thereby shedding new light on the rest of the interstitial cells. These cells were found to contain numerous short processes and were named oligodendroglia and microglia. Defining features of oligodendrocytes were their small cell bodies filled with nuclei containing large amounts of chromatin, and their cellular extensions that lacked fibers but were filled with cytoplasmic granules (Fig. 1). When the tissue was optimally preserved, the silver impregnation uncovered a tremendous complexity of extensions (Fig. 1). del Río-Hortega was able to distinguish four types of oligodendrocytes (Fig. 1): Type I cells generate many different myelin segments on small diameter axons in diverse orientations; type II cells are similar to type I in size and number, but myelin segments run in parallel to each other; type III oligodendrocytes ensheath fewer axons of larger diameter; and type IV oligodendrocytes have a cell body closely apposed to a single very large axon similar to Schwann cells. From the staining, it became clear that some of the processes run in parallel to axons and appeared to cover the axons with “myelin,” a term that was introduced by Virchow already in 1858, long before its origin and function were known.Open in a separate windowFigure 1.Morphology of oligodendroglia in the cerebellum of a cat. (Top right) Cellular processes and branches follow the orientation of the nerve fibers and form complex wraps as shown in del Río-Hortega (1921). (Top left) White matter of a newborn human brain: A, Elongated interfascicular cells filled with spherical granules of variable size; B and C, round granular cells; D, astrocytes with long processes; and E, nucleus of a microglia as shown in del Río-Hortega (1921). (Bottom left) The four types of oligodendrocytes recognized by del Río-Hortega. (Bottom right) Oligodendrocytes expressing proteolipid protein (PLP)–enhanced green fluorescent protein (EGFP) in transgenic mice. Because of its bulky EGFP tag, most of it is found within the cytoplasmic-rich spaces or myelin, including the myelinic channels.Penfield (1924) reinforced the view that the formation of myelin is likely the main role of oligodendrocytes. However, myelination was not considered their only function. Within the gray matter, a fraction of oligodendrocytes were termed “perineuronal” satellite cells, which did not form myelin, but were in close contact with the cell body of neurons, suggesting an interdependent relation. Some oligodendroglia were found in close association with small vessels and were, therefore, subclassified as “perivascular satellites.”The major findings that supported the role of oligodendrocytes in myelin generation were their high number in white matter tracts, their appearance in development at the time of myelination, and their position close to the myelin sheaths. Curiously, the large number of granules in the cytosol of oligodendrocytes, reminiscent of cells of secretory glands, was also taken as evidence for a function in myelin formation. At that time, myelin was not considered to be an extension of the oligodendroglial plasma membrane, however, but rather a fatty axonal substance secreted into the extracellular space. The importance of the “axon cylinder” for saltatory impulse propagation was well recognized, but it was the seminal work of Betty Ben Geren (1954), using electron microscopy (EM) in the chick peripheral nervous system, which showed that myelin is not axon derived, but rather a continuous membranous extension of Schwann cells. A principally similar relationship, with spiral wrapping of the glial plasma membrane around the axon, was confirmed later for oligodendrocytes in the central nervous system (CNS) (for an excellent early review, see Bunge 1968; Hildebrand et al. 1993). Together, these studies have turned oligodendrocytes and myelin from a putty-amorphous “Nervenkitt” into a fascinating study object of cell biology.  相似文献   

14.
In this study, we describe the ultrastructural changes associated with acid activation of Helicobacter pylori vacuolating cytotoxin (VacA). Purified VacA molecules imaged by deep-etch electron microscopy form ~30-nm hexagonal “flowers,” each composed of an ~15-nm central ring surrounded by six ~6-nm globular “petals.” Upon exposure to acidic pH, these oligomeric flowers dissociate into collections of up to 12 teardrop-shaped subunits, each measuring ~6 × 14 nm. Correspondingly, glycerol density gradient centrifugation shows that at neutral pH VacA sediments at ~22 S, whereas at acidic pH it dissociates and sediments at ~5 S. Immunoblot and EM analysis of the 5-S material demonstrates that it represents ~90-kD monomers with 6 × 14–nm “teardrop” morphology. These data indicate that the intact VacA oligomer consists of 12 ~90-kD subunits assembled into two interlocked six-membered arrays, overlap of which gives rise to the flower-like appearance. Support for this interpretation comes from EM identification of small numbers of relatively “flat” oligomers composed of six teardrop-shaped subunits, interpreted to be halves of the complete flower. These flat forms adsorb to mica in two different orientations, corresponding to hexameric surfaces that are either exposed or sandwiched inside the dodecamer, respectively. This view of VacA structure differs from a previous model in which the flowers were interpreted to be single layers of six monomers and the flat forms were thought to be proteolysed flowers. Since acidification has been shown to potentiate the cytotoxic effects of VacA, the present results suggest that physical disassembly of the VacA oligomer is an important feature of its activation.  相似文献   

15.
Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the “classical” KLKs 1–3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation.  相似文献   

16.
A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine (“Ferrovum myxofaciens” strain P3G) have been elucidated. “F. myxofaciens” is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. “F. myxofaciens” can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. “F. myxofaciens” and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of “F. myxofaciens” and other Betaproteobacteria, a new family, “Ferrovaceae,” and order, “Ferrovales,” within the class Betaproteobacteria are proposed. “F. myxofaciens” is the first extreme acidophile to be described in the class Betaproteobacteria.  相似文献   

17.
Heritabilities (h2) of, and phenotypic and genetic correlations among, serum cholesterol (SC), levels of physical activity, growth, and body moisture content were estimated from data on 466 sire-son pairs of random-bred, ICR albino mice. Heritability estimates of SC and body moisture content were 0.31 ± 0.07 and 0.29 ± 0.11, respectively. Estimates of h2 for activity measured by standard exercise wheels at 28, 49 and 70 days of age were 0.31 ± 0.17, 0.50 ± 0.11 and 0.27 ± 0.14 and for weight at 21, 44 and 67 days of age, were 0.11 ± 0.09, 0.33 ± 0.09 and 0.42 ± 0.08, respectively. The estimates of h2 for weight gain ranged from 0.22 ± 0.07 to 0.27 ± 0.08. Significant negative phenotypic correlations occurred between activity and rate of body weight gain. A negative genetic correlation of -0.70 ± 0.11 between SC and body moisture implied that SC and percent body fat are positively correlated. Genetic correlations among SC values and activity scores and between SC values and body weight gains were near zero.  相似文献   

18.
New measurements have been made of fluorescence lifetime (τ) of chlorophyll a in the algae Chlorella pyrenoidosa, Porphyridium cruentum, Anacystis nidulans, and in spinach chloroplast. τ-values of 0.6 and 0.7 nsec were obtained with green plants. Anacystis and Porphyridium gave a τ of 0.5 nsec. The previously described two stage decay of fluorescence in vivo in these organisms could not be confirmed. This observation could have been caused by a second wave of light emission from the exciting hydrogen lamp (not detected in earlier work). The lifetimes found in this study (calculated, as before, by the method of convolution integrals) were close to those found by other observers for “low” excitation intensities; the value first reported from this laboratory (1.0-1.7 nsec) may have corresponded to “high” excitation intensity.  相似文献   

19.
Partial injury to the central nervous system (CNS) is exacerbated by additional loss of neurons and glia via toxic events known as secondary degeneration. Using partial transection of the rat optic nerve (ON) as a model, we have previously shown that myelin decompaction persists during secondary degeneration. Failure to repair myelin abnormalities during secondary degeneration may be attributed to insufficient OPC proliferation and/or differentiation to compensate for loss of oligodendrocyte lineage cells (oligodendroglia). Following partial ON transection, we found that sub-populations of oligodendroglia and other olig2+ glia were differentially influenced by injury. A high proportion of NG2+/olig2–, NG2+/olig2+ and CC1−/olig2+ cells proliferated (Ki67+) at 3 days, prior to the onset of death (TUNEL+) at 7 days, suggesting injury-related cues triggered proliferation rather than early loss of oligodendroglia. Despite this, a high proportion (20%) of the NG2+/olig2+ OPCs were TUNEL+ at 3 months, and numbers remained chronically lower, indicating that proliferation of these cells was insufficient to maintain population numbers. There was significant death of NG2+/olig2– and NG2−/olig2+ cells at 7 days, however population densities remained stable, suggesting proliferation was sufficient to sustain cell numbers. Relatively few TUNEL+/CC1+ cells were detected at 7 days, and no change in density indicated that mature CC1+ oligodendrocytes were resistant to secondary degeneration in vivo. Mature CC1+/olig2– oligodendrocyte density increased at 3 days, reflecting early oligogenesis, while the appearance of shortened myelin internodes at 3 months suggested remyelination. Taken together, chronic OPC decreases may contribute to the persistent myelin abnormalities and functional loss seen in ON during secondary degeneration.  相似文献   

20.

Background and Objective

Conflicting data have been reported on the association between tumor necrosis factor (TNF) –308G>A and nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine. We performed a meta-analysis of case-control studies to evaluate whether the TNF –308G>A and NOS3 +894G>T polymorphisms confer genetic susceptibility to migraine.

Method

We performed an updated meta-analysis for TNF –308G>A and a meta-analysis for NOS3 +894G>T based on studies published up to July 2014. We calculated study specific odds ratios (OR) and 95% confidence intervals (95% CI) assuming allele contrast, dominant model, recessive model, and co-dominant model as pooled effect estimates.

Results

Eleven studies in 6682 migraineurs and 22591 controls for TNF –308G>A and six studies in 1055 migraineurs and 877 controls for NOS3 +894G>T were included in the analysis. Neither indicated overall associations between gene polymorphisms and migraine risk. Subgroup analyses suggested that the “A” allele of the TNF –308G>A variant increases the risk of migraine among non-Caucasians (dominant model: pooled OR = 1.82; 95% CI 1.15 – 2.87). The risk of migraine with aura (MA) was increased among both Caucasians and non-Caucasians. Subgroup analyses suggested that the “T” allele of the NOS3 +894G>T variant increases the risk of migraine among non-Caucasians (co-dominant model: pooled OR = 2.10; 95% CI 1.14 – 3.88).

Conclusions

Our findings appear to support the hypothesis that the TNF –308G>A polymorphism may act as a genetic susceptibility factor for migraine among non-Caucasians and that the NOS3 +894G>T polymorphism may modulate the risk of migraine among non-Caucasians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号