首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precipitation of Saccharomyces cerevisiae ribosomes by ethanol under experimental conditions that do not release the ribosomal proteins can affect the activity of the particles. In the presence of 0.4 M NH4Cl and 50% ethanol only the most acidic proteins from yeast and rat liver ribosomes are released. At 1 M NH4Cl two more non-acidic proteins are lost from the ribosomes. The release of the acidic proteins causes a small inactivation of the polymerizing activity of the particles, additional to that caused by the precipitation itself. The elongation-factor-2-dependent GTP hydrolysis of the ribosomes is, however, more affected by the loss of acidic proteins. These proteins can stimulate the GTPase but not the polymerising activity when added back to the treated particles. Eukaryotic proteins cannot be substituted for bacterial acidic proteins L7 and L12. We have not detected immunological cross-reaction between acidic proteins from Escherichia coli and those from yeast, Artemia salina and rat liver or between acidic proteins from these eukaryotic ribosomes among themselves.  相似文献   

2.
Core particles derived from yeast ribosomes by treatment with 50% ethanol and 0.4 M NH4Cl (P0.4 cores) are derived of the acidic proteins L44/45 functionally equivalent to the bacterial proteins L7 and L12. These bacterial proteins are able to reconstitute the EF-2-dependent GDP binding capacity of the yeast cores but not their GTPase activity. On the other hand, yeast particles prepared in similar conditions but in the presence of 1 M NH4Cl (P1.0 cores) lose proteins L44/45, L15, and S31. These particles are able to reconstitute both activities by the bacterial proteins L7 and L12. Proteins L15 and S31 somehow affect the interaction of bacterial proteins L7 and L12 with the yeast particles. Indeed, in their presence only one dimer of L7 and L12 is bound to the P0.4 cores, while in their absence (P1.0 cores) the amount of bacterial proteins retained by the yeast particles is doubled. Elongation factor EF-2 seems to play an important role in the binding of the bacterial proteins to the yeast cores. Our results suggest that the two dimers of L7 and L12 normally present in the ribosomes might play a different functional role, one of the dimers being related to the binding of the substrate and the other one involved in the GTPase active center.  相似文献   

3.
Core particles of 50S ribosomes depleted of L7L12 proteins are degraded by RNase I at a considerably slower rate than intact 50S ribosomes. The normal rate is restored on incorporating L7L12 proteins into the core particles. The capacity of the core particles to inhibit the RNase I-catalyzed hydrolysis of poly A and to bind ethidium bromide is also greater with core particles than with intact 50S ribosomes. It appears from these results that the region(s) of rRNA in the vicinity of L7L12 proteins has less ordered structure which, on removal of L7L12 proteins, becomes more organized. Apparently, binding of L7L12 proteins to the 50S core leads to the destabilization of double-stranded regions of rRNA.  相似文献   

4.
Radioactive ribosomes from Escherichia coli were treated with increasing concentrations of NH4Cl in the presence of 50% ethanol. The resulting particles were tested for peptidyl transferase activity as well as for the binding of (U)C-A-C-C-A-Leu-Ac, (U)C-A-C-C-A-Leu, chloramphenicol, lincomycin and erythromycin. At the same time the proteins present in the particles were quantitatively estimated and the amount of each related to the residual activity displayed by the treated ribosomes. It was found that the loss of protein L16 closely paralleled the inactivation of the particles implying an important role for this protein in the structure of the peptidyl transferase center.  相似文献   

5.
We used mass spectrometry to identify proteins that are released in the gas phase from Escherichia coli ribosomes in response to a range of different solution conditions and cofactor binding. From solution at neutral pH the spectra are dominated by just 4 of the 54 ribosomal proteins (L7/L12, L11, and L10). Lowering the pH of the solution leads to the gas phase dissociation of four additional proteins as well as the 5 S RNA. Replacement of Mg(2+) by Li(+) ions in solutions of ribosomes induced the dissociation of 17 ribosomal proteins. Correlation of these results with available structural information for ribosomes revealed that a relatively high interaction surface area of the protein with RNA was the major force in preventing dissociation. By using the proteins that dissociate to probe their interactions with RNA, we examined different complexes of the ribosome formed with the elongation factor G and inhibited by fusidic acid or thiostrepton. Mass spectra recorded for the fusidic acid-inhibited complex reveal subtle changes in peak intensity of the proteins that dissociate. By contrast gas phase dissociation from the thiostrepton-inhibited complex is markedly different and demonstrates the presence of L5 and L18, two proteins that interact exclusively with the 5 S RNA. These results allow us to propose that the ribosome elongation factor-G complex inhibited by thiostrepton, but not fusidic acid, involves destabilization of 5 S RNA-protein interactions.  相似文献   

6.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

7.
The effects of antibodies specific for the Escherichia coli 30 S and 50 S ribosomal proteins have been determined for in vitro peptide chain termination and two partial reactions, the codon-directed binding of E. coli release factor to the ribosome and peptidyl-tRNA hydrolysis with RF2. Antibodies to ribosomal proteins L7 and L12 inhibit the initial binding of RF to the ribosome, and as a result, the subsequent peptidyl-tRNA hydrolysis. The kinetics of ribosomal inactivation for in vitro termination by anti-L7/L12 indicate that Fab fragments bind to three ribosome sites, and suggest that each of three copies of L7/L12 is involved in the binding of RF to the ribosome. When 70 S ribosome substrates are pretreated with anti-L11 and anti-L16 RF-dependent peptidyl-tRNA, hydrolysis is partially inhibited but the interaction of RF with the ribosome is not affected. The inactivation of in vitro termination by a mixture of anti-L11 and anti-L16 is not co-operative. Pretreatment of the 30 S ribosomal subunit (but not 70 S ribosomal substrate) with antibodies to the 30 S proteins, S9 and S11, results in strong inhibition of codon-directed hydrolysis of peptidyl-tRNA. While these antibodies inhibit ribosome subunit association, a requirement for peptide chain termination, and thereby may inhibit the in vitro termination reactions indirectly, the codon-directed binding of RF is markedly more affected than peptidyl-tRNA hydrolysis by anti-S9 and anti-S11. Antibody to S2 and anti-S3 exhibit a similar but less marked differential effect on the partial reactions of in vitro termination under the same conditions. When dissociated ribosomes are pretreated with anti-L11, in vitro termination is completely inhibited and both codon-directed binding of RF and peptidyl-tRNA hydrolysis are affected. L11 may, therefore, be at or near the interface between the ribosome subunits and like S9 and S11 not completely accessible to antibody in 70 S ribosomes. Pretreatment of dissociated ribosomes with antibodies to a number of other ribosomal proteins (L2, L4, L6, L14, L15, L17, L18, L20, L23, L26, L27) results in partial inhibition of all termination reactions although these antibodies have no effect on termination when incubated with 70 S ribosome substrates. The antibodies probably affect in vitro termination indirectly as a result of either preventing correct ribosome subunit association, or preventing correct positioning of the fMet-tRNA at the ribosome P site.  相似文献   

8.
During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.  相似文献   

9.
Escherichia coli elongation factor G blocks stringent factor   总被引:3,自引:0,他引:3  
E G Wagner  C G Kurland 《Biochemistry》1980,19(6):1234-1240
The relationship between the binding domains of elongation factor G(EF-G) and stringent factor (SF) on ribosomes was studied. The binding of highly purified, radioactively labeled, protein factors to ribosomes was monitored with a column system. The data show that binding of EF-G to ribosomes in the presence of fusidic acid and GDP or of the noncleavable analogue GDPCP prevents subsequent binding of SF to ribosomes. In addition, stabilization of the EF-G-ribosome complex by fusidic acid inhibits SF's enzymatic activities. Removal of protein L7/L12 from ribosomes leads to weaker binding of EF-G, while SF's binding and activity are unaffected. In the absence of L7/L12, EF-G-dependent inhibition of SF binding and function is reduced. The data presented in this report suggest that these two factors bind at overlapping, or at least interacting, ribosomal domains.  相似文献   

10.
Treatment of Escherichia coli ribosomes with the protein reagent 2,3-dimethylmaleic anhydride is accompanied by inactivation of polypeptide polymerization and by dissociation of ribosomal proteins. Regeneration of the modified amino groups at pH 6.0 is followed by reactivation and reconstitution of the ribosomes. Prior to regeneration of the amino groups, ribosomal particles and split proteins can be separated by centrifugation, which allows the preparation of new protein-deficient particles. The ribosomal particles obtained by three successive treatments with 2,3-dimethyl-maleic anhydride at a molar ratio of reagent to ribosome equal to 16,000 lack proteins S1, S2, S3, S5, S10, S13, S14, L7, L8, L10, L11, L12, and L20 and have lost part of proteins S4, L1, L6, L16, and L25. This new procedure to obtain protein-deficient ribosomal particles is mild and might be useful to dissociate other protein-containing structures in addition to ribosomes.  相似文献   

11.
Two proteins (ribophorins I and II), which are integral components of rough microsomal membranes and appear to be related to the bound ribosomes, were shown to be exposed on the surface of rat liver rough microsomes (RM) and to be in close proximity to the bound ribosomes. Both proteins were labeled when intact RM were incubated with a lactoperoxidase iodinating system, but only ribophorin I was digested during mild trypsinization of intact RM. Ribophorin II (63,000 daltons) was only proteolyzed when the luminal face of the microsomal vesicles was made accessible to trypsin by the addition of sublytical detergent concentrations. Only 30--40% of the bound ribosomes were released during trypsinization on intact RM, but ribosome release was almost complete in the presence of low detergent concentrations. Very low glutaraldehyde concentrations (0.005--0.02%) led to the preferential cross-linking of large ribosomal subunits of bound ribosomes to the microsomal membranes. This cross-linking prevented the release of subunits caused by puromycin in media of high ionic strength, but not the incorporation of [3H]puromycin into nascent polypeptide chains. SDS-acrylamide gel electrophoresis of cross-linked samples a preferential reduction in the intensity of the bands representing the ribophorins and the formation of aggregates which did not penetrate into the gels. At low methyl-4-mercaptobutyrimidate (MMB) concentrations (0.26 mg/ml) only 30% of the ribosomes were cross-linked to the microsomal membranes, as shown by the puromycin-KCl test, but membranes could still be solubilized with 1% DOC. This allowed the isolation of the ribophorins together with the sedimentable ribosomes, as was shown by electrophoresis of the sediments after disruption of the cross-links by reduction. Experiments with RM which contained only inactive ribosomes showed that the presence of nascent chains was not necessary for the reversible cross-linking of ribosomes to the membranes. These observations suggest that ribophorins are in close proximity to the bound ribosomes, as may be expected from components of the ribosome-binding sites.  相似文献   

12.
Ribosomal protein L11 is one of only two ribosomal proteins significantly iodinated when Escherichia coli 50 S subunits are modified by immobilized lactoperoxidase, and the major target has been shown previously to be tyrosine at position 7 in the N-terminal domain. This modification reduces in vitro termination activity with release factor (RF)-1 by 70-90%, but RF-2 activity is less affected (30-50%). The loss of activity parallels incorporation of iodine into the subunit. The 50 S subunits from L11-lacking strains of bacteria have highly elevated activity with RF-2 and low activity with RF-1. The iodination does not affect RF-2 activity but reduces the RF-1 activity further. Ribosomal proteins, L2, L6, and L25, are significantly labeled in L11-lacking ribosomes in contrast to the control 50 S subunits. L11 has been modified in isolation and incorporated back efficiently into L11-lacking ribosomes. This L11, iodinated also predominantly at Tyr 7, is unable to restore RF-1 activity to L11-lacking ribosomes in contrast to mock-iodinated protein. These results suggest the involvement of the N terminus of L11 in the binding domain of the bacterial release factors and indicate that there are subtle differences in how the two factors interact with the ribosome.  相似文献   

13.
Under standard conditions (Mg2+/150 mM NH4+) ribosomes can quantitatively participate in tRNA binding at Mg2+ concentrations of 12 to 15 mM. The overall poly(U)-directed Phe incorporation and the extent of tRNA binding to either P, E or A sites decrease in a parallel manner when the Mg2+ concentration is lowered below 10 mM. At 4 mM the inactivation amounts to about 80%. The coordinate inactivation of all three binding sites is accompanied by an increasing impairment of the ability to translocate A-site bound AcPhe-tRNA to the P site. The translocation efficiency is already reduced at 10 mM Mg2+, and is completely blocked at 6-8 mM. The severe inactivation seen at 6 mM Mg2+ vanishes when the polyamines spermine (0.6 mM) and spermidine (0.4 mM) are present in the assay; tRNA binding again becomes quantitative, the total Phe synthesis even exceeds that observed in the absence of polyamines by a factor of 4. In the presence of polyamines and low Mg2+ (3 and 6 mM) two essential features of the allosteric three-site model (Rheinberger and Nierhaus, J. Biol. Chem. 261, 9133 (1986] are demonstrated. 1) Deacylated tRNA is not released from the P site, but moves to the E site during the course of translocation. 2) Occupation of the E site reduces the A site affinity and vice versa (allosteric interactions between E and A sites). The quality of an in vitro system for protein synthesis can be assessed by two criteria. First, the incubation conditions must allow a near quantitative tRNA binding. Secondly, protein synthesis should proceed with near in vivo rate and accuracy. The 3 mM Mg2+/NH4+/polyamine-system seems to be the best compromise at present between these two requirements.  相似文献   

14.
Liver ribosomes and subunits were reacted with increasing concentrations of 2-methoxy-5-nitrotropone. At low reagent concentrations (0.3 mM), the molar uptake by 60S subunits was more efficient than the uptake by 40S subunits, and the amount of reagent bound to 80S ribosomes was less than that bound to both free subunits considered together. At higher reagent concentrations, the molar uptake of both subunits was equivalent. Subunits and ribosomes remained fully active when reacted with up to 0.3 mM and 1 mM of the reagent, respectively. With 2 mM of the reagent, both subunits were half inactivated, although their sedimentation characteristics were unaltered. The reactivity of each ribosomal protein was assessed by two-dimensional gel electrophoresis and quantitative measurement of the unmodified proteins. From these results, considered together with the uptake characteristics and the inactivation curves, a number of tentative conclusions about ribosome topography can be drawn. The over-all sensitivity of the 60S subunits to the reagent is higher than that of the 40S subunits. Both subunits undergo a conformational change when they combine to form 80S ribosomes. Proteins S18, S20, S28 and L5, L9, L11, L15, L16, L25, L29, L30, L31, L34, L37 have NH2 groups exposed in native subunits. These groups are not essential for subunit function.  相似文献   

15.
The macrolide antibiotics carbomycin A, niddamycin, and tylosin have been radioactively labeled by reducing their aldehyde group at the C-18 position. Dihydro derivatives with specific activities around 2.5 Ci/mmol can be obtained that, although partially affected in their activity, still bind to the ribosomes with high affinity. The presence in the chemical structure of these antibiotics of alpha-beta-unsaturated ketone groups makes them photochemically reactive, and by irradiation above 300 nm, covalent incorporation of the radioactive dihydro derivatives into ribosomes has been achieved. The covalent binding seems to take place at the specific binding sites for macrolides as deduced from binding saturation studies and competition experiments with unmodified drugs. Analysis of the ribosomal components labeled by the drugs indicated that most radioactivity is associated with the proteins L27, L2, and L28 when 50S subunits are labeled, and with L27, L2, L32/33, S9, and S12 in the case of 70S ribosomes. These results agree well with a model of macrolides' mode of action that assumes an interaction of the drug at the peptidyl transferase P site that would block the exit channel for the growing peptide chain.  相似文献   

16.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

17.
The ribosomal stalk complex binds and recruits translation factors to the ribosome during protein biosynthesis. In Escherichia coli the stalk is composed of protein L10 and four copies of L7/L12. Despite the crucial role of the stalk, mechanistic details of L7/L12 subunit exchange are not established. By incubating isotopically labeled intact ribosomes with their unlabeled counterparts we monitored the exchange of the labile stalk proteins by recording mass spectra as a function of time. On the basis of kinetic analysis, we proposed a mechanism whereby exchange proceeds via L7/L12 monomers and dimers. We also compared exchange of L7/L12 from free ribosomes with exchange from ribosomes in complex with elongation factor G (EF-G), trapped in the posttranslocational state by fusidic acid. Results showed that binding of EF-G reduces the L7/L12 exchange reaction of monomers by ~27% and of dimers by ~47% compared with exchange from free ribosomes. This is consistent with a model in which binding of EF-G does not modify interactions between the L7/L12 monomers but rather one of the four monomers, and as a result one of the two dimers, become anchored to the ribosome-EF-G complex preventing their free exchange. Overall therefore our results not only provide mechanistic insight into the exchange of L7/L12 monomers and dimers and the effects of EF-G binding but also have implications for modulating stability in response to environmental and functional stimuli within the cell.  相似文献   

18.
The relative levels of protein L12 and its α-N-acetylated form L7 in ribosomes of Escherichia coli have previously been shown to markedly vary during the growth cycle. The present labeling study shows preferential utilization of L12 in early logarithmic phase and of L7 in late logarithmic phase. Both forms are, however, simultaneously used throughout the growth cycle. After assembly into ribosomes, L7 and L12 are conserved without net interconversion. It is therefore concluded that the variation in L12 to L7 ratio takes place through changes in the relative flow of L7 and L12 species into ribosome assembly rather than by modification in pre-existing ribosomes. During this study, we have also measured the surprisingly large difference in the binding of Coomassie Blue to these proteins.  相似文献   

19.
A new technique of atomic tritium bombardment has been used to study the surface topography of Escherichia coli ribosomes and ribosomal subunits. The technique provides for the labeling of proteins exposed on the surface of ribosomal particles, the extent of protein labeling being proportional to the degree of exposure. The following proteins were considerably tritiated in the 70S ribosomes: S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L1, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27. A conclusion is drawn that these proteins are exposed on the ribosome surface to an essentially greater extent than the others. Dissociation of 70S ribosomes into the ribosomal subunits by decreasing Mg2+ concentration does not lead to the exposure of additional ribosomal proteins. This implies that there are no proteins on the contacting surfaces of the subunits. However, if a mixture of subunits has been subjected to centrifugation in a low Mg2+ concentration at high concentrations of a monovalent cation, proteins S3, S5, S7, S14, S18 and L16 are more exposed on the surface of the isolated 30S and 50S subunits than in the subunit mixture or in the 70S ribosomes. The exposure of additional proteins is explained by distortion of the native quaternary structure of ribosomal subunits as a result of the separation procedure. Reassociation of isolated subunits at high Mg2+ concentration results in shielding of proteins S3, S5, S7 and S18 and can be explained by reconstitution of the intact 30S subunit structure.  相似文献   

20.
1. When the binding of ethidium bromide to rRNA is measured both in the presence and in the absence of spermine, by spectrophotometric titrations, by gel filtration, or by the changes in fluorescence intensity, spermine competes with ethidium bromide for sites on the rRNA; under the conditions used in these experiments ethidium bromide is bound to the double-stranded regions of rRNA. 2. When an excess of ethidium bromide is added to ribosomes from Bacillus stearothermophilus approx. 80% of the endogenous spermine is displaced from the ribosomes. 3. [(14)C]Spermine is fixed to ribosomes by either formaldehyde or 1,5-difluoro-2,4-dinitrobenzene. Most of the [(14)C]spermine, fixed to ribosomes by 1,5-difluoro-2,4-dinitrobenzene, attaches to the ribosomal protein. 4. It is concluded that most of the endogenous spermine is bound to the double-stranded RNA in ribosomes, and that some of these double-stranded regions to which spermine is attached also have ribosomal proteins bound to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号