首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
miR-34是一类保守的、非编码miRNA。人类miR-34包括miR-34a、miR-34b和miR-34c等,在多种肿瘤中都呈现非正常表达。miR-34通过被p53激活,抑制E2F3、Bcl-2、c—myc、CDK4、CDK6、Cyclin D1以及Cyclin E2的表达,使肿瘤细胞停滞在G1期,抑制肿瘤细胞的生长,诱导肿瘤细胞凋亡,并通过E2F3、SIRT1与p53形成正反馈环路,不断增强其自身和p53的作用。本文就miR-34的研究进展进行综述。  相似文献   

2.
3.
Members of the miR-200 family of micro RNAs (miRNAs) have been shown to inhibit epithelial-mesenchymal transition (EMT). EMT of tubular epithelial cells is the mechanism by which renal fibroblasts are generated. Here we show that miR-200 family members inhibit transforming growth factor-beta (TGF-beta)-induced EMT of tubular cells. Unilateral ureter obstruction (UUO) is a common model of EMT of tubular cells and subsequent tubulointerstitial fibrosis. In order to examine the role of miR-200 family members in tubulointerstitial fibrosis, their expression was investigated in the kidneys of UUO mice. The expression of miR-200 family miRNAs was increased in a time-dependent manner, with induction of miR-200b most pronounced. To clarify the effect of miR-200b on tubulointerstitial fibrosis, we injected miR-200b precursor intravenously. A single injection of 0.5 nM miR-200b precursor was sufficient to inhibit the increase of collagen types I, III and fibronectin in obstructed kidneys, and amelioration of fibrosis was confirmed by observation of the kidneys with Azan staining. miR-200 family members have been previously shown to inhibit EMT by reducing the expression of ZEB-1 and ZEB-2 which are known repressors of E-cadherin. We demonstrated that expression of ZEB-1 and ZEB-2 was increased after ureter obstruction and that administration of the miR-200b precursor reversed this effect. In summary, these results indicate that miR-200 family is up-regulated after ureter obstruction, miR-200b being strongly induced, and that miR-200b ameliorates tubulointerstitial fibrosis in obstructed kidneys. We suggest that members of the miR-200 family, and miR-200b specifically, might constitute novel therapeutic targets in kidney disease.  相似文献   

4.
It is clear that the well-described phenomenon of epithelial–mesenchymal transition (EMT) plays a pivotal role in embryonic development, wound healing, tissue regeneration, organ fibrosis and cancer progression. EMTs have been classified into three subtypes based on the functional consequences and biomarker context in which they are encountered. This review will highlight findings on type II EMT as a direct contributor to the kidney myofibroblast population in the development of renal fibrosis, specifically in diabetic nephropathy, the signalling molecules and the pathways involved in type II EMT and changes in the expression of specific miRNA with the EMT process. These findings have provided new insights into the activation and development of EMT during disease processes and may lead to possible therapeutic interventions to suppress EMTs and potentially reverse organ fibrosis.  相似文献   

5.
6.
Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Translational regulation by microRNAs is a key factor in the expression and function of eukaryotic genomes. Because perfect matching to target sequence is not required for inhibition, theoretically, microRNAs could regulate simultaneously multiple mRNAs. We show here that a single microRNA, miR-103, simultaneously regulates the expression of the three subunits forming Cav1.2-LTC in a novel integrative regulation. This regulation is bidirectional since knocking-down or over-expressing miR-103, respectively, up- or down-regulate the level of Cav1.2-LTC translation. Functionally, we show that miR-103 knockdown in naive rats results in hypersensitivity to pain. Moreover, we demonstrate that miR-103 is down-regulated in neuropathic animals and that miR-103 intrathecal applications successfully relieve pain, identifying miR-103 as a novel possible therapeutic target in neuropathic chronic pain.  相似文献   

7.
miR-375 is an important small non-coding RNA that is specifically expressed in islet cells of the pancreas. miR-375 is required for normal pancreatic genesis and influences not only β-cell mass but also α-cell mass. miR-375 is also important to glucose-regulated insulin secretion through the regulation of the expression of Mtpn and Pdk1 genes. When human embryonic stem cells (hESCs) differentiate into endodermal lineages, miR-375 is highly expressed in the definitive endoderm, which suggests that miR-375 may have a distinct role in early development. miR-375 plays an important role in the complex regulatory network of pancreatic development, which could be regulated by pancreatic genes, such as NeuroD1, Ngn3, Pdx1 and Hnf6; additionally, miR-375 regulates genes related to pancreas development, cell growth and proliferation and insulin secretion genes to exert its function. Because of the special role of miR-375, it may be a potential target to treat diabetes. Antagonising miR-375 may enhance the effects of exendin-4 in patients, and controlling the expression of miR-375 could assist mature hESCs-derived β-cells.  相似文献   

8.
Abstract

miRNAs are endogenous non-coding RNAs that are ~22 nucleotides in length and can have structural, enzymatic and regulatory functions. miRNAs play important roles in the progression of renal fibrosis. miR-21, through a feed-forward loop and a downstream mediator of transforming growth factor-β (TGF-β), amplifies TGF-β signaling and promotes fibrosis. miR-21 is high on the list of non-coding, small, regulatory RNAs that promote renal fibrosis and emerges as a serum biomarker for kidney diseases, but many questions await answers. This review was performed to sum up the role of miR-21 and its signaling pathways in renal diseases.  相似文献   

9.
In the last years small RNA molecules, i.e. microRNA (miRNA) encoded by miR genes, have been found to play a crucial role in regulating gene expression of a considerable part of plant's and animal's genome. Here, we report the essential information on biogenesis of miRNAs and recent evidence on their important role in human diseases. Emphasis has been given to miR-155, since this molecule represents a typical multifunctional miRNA. Recent data indicate that miR-155 has distinct expression profiles and plays a crucial role in various physiological and pathological processes such as haematopoietic lineage differentiation, immunity, inflammation, cancer, and cardiovascular diseases. Moreover, miR-155 has been found to be implicated in viral infections, particularly in those caused by DNA viruses. The available experimental evidence indicating that miR-155 is over expressed in a variety of malignant tumors allows us to include this miRNA in the list of genes of paramount importance in cancer diagnosis and prognosis. Exogenous molecular control in vivo of miR-155 expression could open up new ways to restrain malignant growth and viral infections, or to attenuate the progression of cardiovascular diseases.  相似文献   

10.
11.
Molecular Biology Reports - Atherosclerosis and related cardiovascular diseases are among the most common causes of death worldwide. Unfolded protein response, also known as Endoplasmic...  相似文献   

12.
MicroRNA-7 (miR-7) has been described as a tumor suppressor in several human cancers, but the results of a study to identify miRNAs associated with metastatic capability in breast cancer suggested that miR-7 may be characterized as an oncogene. The present study was to determine the expression and function of miR-7 in renal cell carcinoma. Quantitative real-time polymerase chain reaction was used to validate the expressions of miR-7 in 48 paired renal cell carcinomas (RCC) and normal tissues, based on the preliminary sequencing results of miRNAs. Furthermore, the impacts of miR-7 on cell migration, proliferation and apoptosis were analyzed using wound scratch assay, MTT and flow cytometry, respectively. The results demonstrated that miR-7 was up-regulated in RCC compared with normal tissues (p = 0.001). Down-regulation of miR-7 with synthesized inhibitor inhibited cell migration in vitro, suppressed cell proliferation and induced renal cancer cell apoptosis, prompting that miR-7 could be characterized as an oncogene in RCC. The present study was the first to reveal that miR-7 was up-regulated in RCC and it played an important role in RCC by affecting cellular migration, proliferation and apoptosis. Further researches should be conducted to explore the roles and target genes of miR-7 in RCC and other cancers.  相似文献   

13.
The role of the tubulointerstitium in radiation-induced renal fibrosis   总被引:2,自引:0,他引:2  
The functional and morphological response of the remaining hypertrophied kidney in unilaterally nephrectomized rats to single doses of 0-20 Gy X rays was investigated. Functional and histological end points were assessed serially 4-24 weeks postirradiation. Renal irradiation led to time- and dose-dependent reductions in renal function, seen in terms of a decreased glomerular filtration rate, increased blood urea nitrogen, and reduced hematocrit. These changes were accompanied by morphological changes in the glomerular, tubular and interstitial portions of the kidney. However, dose-dependent changes were observed only in terms of tubulointerstitial lesions. Significant increases in the degree of interstitial staining for collagen type III and fibronectin were observed 24 weeks postirradiation. These increases in extracellular matrix components were accompanied by a significant increase in interstitial alpha smooth muscle actin, suggesting activation of interstitial fibroblasts into myofibroblasts. There was no evidence of glomerular Tgfb after renal irradiation. A significant increase in tubular Tgfb staining was only seen 8 weeks postirradiation. In contrast, there was a shift of staining to the interstitium such that by 24 weeks postirradiation interstitial Tgfb staining was significantly greater than that seen in controls. These findings suggest that the tubule epithelial cell and the interstitial fibroblast are both active participants in the development and/or progression of radiation-induced renal fibrosis.  相似文献   

14.
上皮—间质转化在肾间质纤维化中的作用   总被引:1,自引:0,他引:1  
上皮-间质转化在发育和纤维化过程中具有重要作用。本文综述了上皮-间质转化发生的过程及其机制的研究进展,尤其是细胞外基质、生长因子、粘附分子及基因对上皮-间质转化的影响。并就在肾间质纤维化过程中因上皮-间质转化致成纤维细胞增多,从而导致肾纤维化的可能作用及其影响因素作一述。  相似文献   

15.
16.
17.

Background

Immune thrombocytopenic purpura (ITP) is a common autoimmune disorder diagnosed with thrombocytopenia and bleeding symptoms due to production of autoantibodies (Abs) against platelets. Nowadays, microRNAs are known as novel biomarkers for diagnosis of diseases. The aim of this study was to investigate the expression levels of miR-21 and miR-150 in ITP patients and determine the role of these miRNAs in ITP pathogenesis.

Materials and Methods

Thirty newly diagnosed patients with acute ITP and 30 healthy subjects( age and sex matched) as controls were enrolled in this study. The expression level of miR-21 and miR-150 was investigated using Real-time-PCR. Comparison of demographic characteristics of the cases was done using independent t-test and chi-square test. Comparison of the expression level of miR-21 and miR-150 with the related parameters was done using independent t-test or Mann–Whitney and Kruskal–Wallis test. Spearman rho correlation coefficient was used to investigate the relationship between the expression of miR-21 and miR-150 with demographic characteristics.

Results

The expression of miR-21, 150 in the patients was not different compared with the control group in general. A significant relationship between the expression of miR-21 with hemoglobin, hematocrit and red blood cell hemoglobin concentration was observed.

Discussion

Expression of miR-21 and miR-150 is not associated with pathogenesis of acute ITP and can involve the synergistic role of other miRNAs. Investigation of miR-21 and miR-150 expression along with other miRNAs and cytokines can be helpful in diagnosis and pathogenesis of ITP.
  相似文献   

18.
19.
Renal cell carcinoma (RCC) metastasis portends a poor prognosis and cannot be reliably predicted. Early determination of the metastatic potential of RCC may help guide proper treatment. We analyzed microRNA (miRNA) expression in clear cell RCC (ccRCC) for the purpose of developing a miRNA expression signature to determine the risk of metastasis and prognosis. We used the microarray technology to profile miRNA expression of 78 benign kidney and ccRCC samples. Using 28 localized and metastatic ccRCC specimens as the training cohort and the univariate logistic regression and risk score methods, we developed a miRNA signature model in which the expression levels of miR-10b, miR-139-5p, miR-130b and miR-199b-5p were used to determine the status of ccRCC metastasis. We validated the signature in an independent 40-sample testing cohort of different stages of primary ccRCCs using the microarray data. Within the testing cohort patients who had at least 5 years follow-up if no metastasis developed, the signature showed a high sensitivity and specificity. The risk status was proven to be associated with the cancer-specific survival. Using the most stably expressed miRNA among benign and tumorous kidney tissue as the internal reference for normalization, we successfully converted his signature to be a quantitative PCR (qPCR)-based assay, which showed the same high sensitivity and specificity. The 4-miRNA is associated with ccRCC metastasis and prognosis. The signature is ready for and will benefit from further large clinical cohort validation and has the potential for clinical application.  相似文献   

20.
Germline mutations in the gene encoding phosphatase and tensin homolog deleted on chromosome ten (PTEN [MIM 601728]) are associated with a number of clinically distinct heritable cancer syndromes, including both Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). Seemingly identical pathogenic PTEN mutations have been observed in patients with CS and BRRS, as well as in patients with incomplete features of CS, referred to as CS-like (CSL) patients. These observations indicate that additional, unidentified, genetic and epigenetic factors act as phenotypic modifiers in these disorders. These genetic factors could also contribute to disease in patients with CS, CSL, or BRRS without identifiable PTEN mutations. Two potential modifiers are miR-19a and miR-21, which are previously identified PTEN-targeting miRNAs. We investigated the role of these miRNAs by characterizing their relative expression levels in PTEN-mutation-positive and PTEN-mutation-negative patients with CS, CSL, or BRRS. Interestingly, we observed differential expression of miR-19a and miR-21 in our PTEN-mutation-positive patients. Both were found to be significantly overexpressed within this group (p < 0.01) and were inversely correlated with germline PTEN protein levels. Similarly, the relative expression of miR-19a and miR-21 was differentially expressed in a series of PTEN-mutation-negative patients with CS or CSL with variable clinical phenotypes and decreased full-length PTEN protein expression. Among PTEN-mutation-positive patients with CS, both miRNAs were significantly overexpressed (p = 0.006-0.013). Taken together, our study results suggest that differential expression of PTEN-targeting miR-19a and miR-21 modulates the PTEN protein levels and the CS and CSL phenotypes, irrespective of the patient's mutation status, and support their roles as genetic modifiers in CS and CSL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号