首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we show that emb-30 is required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Germline-specific emb-30 mutant alleles block the meiotic divisions. Mutant oocytes, fertilized by wild-type sperm, set up a meiotic spindle but do not progress to anaphase I. As a result, polar bodies are not produced, pronuclei fail to form, and cytokinesis does not occur. Severe-reduction-of-function emb-30 alleles (class I alleles) result in zygotic sterility and lead to germline and somatic defects that are consistent with an essential role in promoting the metaphase-to-anaphase transition during mitosis. Analysis of the vulval cell lineages in these emb-30(class I) mutant animals suggests that mitosis is lengthened and eventually arrested when maternally contributed emb-30 becomes limiting. By further reducing maternal emb-30 function contributed to class I mutant animals, we show that emb-30 is required for the metaphase-to-anaphase transition in many, if not all, cells. Metaphase arrest in emb-30 mutants is not due to activation of the spindle assembly checkpoint but rather reflects an essential emb-30 requirement for M-phase progression. A reduction in emb-30 activity can suppress the lethality and sterility caused by a null mutation in mdf-1, a component of the spindle assembly checkpoint machinery. This result suggests that delaying anaphase onset can bypass the spindle checkpoint requirement for normal development. Positional cloning established that emb-30 encodes the likely C. elegans orthologue of APC4/Lid1, a component of the anaphase-promoting complex/cyclosome, required for the metaphase-to-anaphase transition. Thus, the anaphase-promoting complex/cyclosome is likely to be required for all metaphase-to-anaphase transitions in a multicellular organism.  相似文献   

2.
The anaphase-promoting complex (APC/C) is a large ubiquitin-protein ligase which controls progression through anaphase by triggering the degradation of cell cycle regulators such as securin and B-type cyclins. The APC/C is an unusually complex ligase containing at least 10 different, evolutionarily conserved components. In contrast to APC/C's role in cell cycle regulation little is known about the functions of individual subunits and how they might interact with each other. Here, we have analyzed Swm1/Apc13, a small subunit recently identified in the budding yeast complex. Database searches revealed proteins related to Swm1/Apc13 in various organisms including humans. Both the human and the fission yeast homologues are associated with APC/C subunits, and they complement the phenotype of an SWM1 deletion mutant of budding yeast. Swm1/Apc13 promotes the stable association with the APC/C of the essential subunits Cdc16 and Cdc27. Accordingly, Swm1/Apc13 is required for ubiquitin ligase activity in vitro and for the timely execution of APC/C-dependent cell cycle events in vivo.  相似文献   

3.
Tarailo M  Kitagawa R  Rose AM 《Genetics》2007,175(4):1665-1679
The spindle assembly checkpoint (SAC) governs the timing of metaphase-to-anaphase transition and is essential for genome stability. The Caenorhabditis elegans mutant strain gk2 carries a deletion within the mdf-1/MAD1 gene that results in death of the homozygous strain after two or three generations. Here we describe 11 suppressors of the mdf-1(gk2) lethality, 10 identified in an ethyl methanesulfonate (EMS) mutagenesis screen and 1 isolated using the dog-1(gk10) (deletions of guanine-rich DNA) mutator strain. Using time-lapse imaging of early embryonic cells and germline mitotic division, we demonstrate that there are two classes of suppressors. Eight suppressors compensate for the loss of the checkpoint by delaying mitotic progression, which coincides with securin (IFY-1/Pds1) accumulation; three suppressors have normal IFY-1/Pds1 levels and normal anaphase onset. Furthermore, in the class of suppressors with delayed mitotic progression, we have identified four alleles of known suppressors emb-30/APC4 and fzy-1/CDC20, which are components of the anaphase-promoting complex/cyclosome (APC/C). In addition, we have identified another APC/C component capable of bypassing the checkpoint requirement that has not previously been described in C. elegans. The such-1/APC5-like mutation, h1960, significantly delays anaphase onset both in germline and in early embryonic cells.  相似文献   

4.
BACKGROUND: Chromosome segregation and mitotic exit depend on activation of the anaphase-promoting complex (APC) by the substrate adaptor proteins CDC20 and CDH1. The APC is a ubiquitin ligase composed of at least 11 subunits. The interaction of APC2 and APC11 with E2 enzymes is sufficient for ubiquitination reactions, but the functions of most other subunits are unknown. RESULTS: We have biochemically characterized subcomplexes of the human APC. One subcomplex, containing APC2/11, APC1, APC4, and APC5, can assemble multiubiquitin chains but is unable to bind CDH1 and to ubiquitinate substrates. The other subcomplex contains all known APC subunits except APC2/11. This subcomplex can recruit CDH1 but fails to support any ubiquitination reaction. In vitro, the C termini of CDC20 and CDH1 bind to the closely related TPR subunits APC3 and APC7. Homology modeling predicts that these proteins are similar in structure to the peroxisomal import receptor PEX5, which binds cargo proteins via their C termini. APC activation by CDH1 depends on a conserved C-terminal motif that is also found in CDC20 and APC10. CONCLUSIONS: APC1, APC4, and APC5 may connect APC2/11 with TPR subunits. TPR domains in APC3 and APC7 recruit CDH1 to the APC and may thereby bring substrates into close proximity of APC2/11 and E2 enzymes. In analogy to PEX5, the different TPR subunits of the APC might function as receptors that interact with the C termini of regulatory proteins such as CDH1, CDC20, and APC10.  相似文献   

5.
The anaphase‐promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that is involved in regulating cell‐cycle progression. It has been widely studied in yeast and animal cells, but the function and regulation of the APC/C in plant cells are largely unknown. The Arabidopsis APC/C comprises at least 11 subunits, only a few of which have been studied in detail. APC4 is proposed to be a connector in the APC/C in yeast and animals. Here, we report the functional characterization of the Arabidopsis APC4 protein. We examined three heterozygous plant lines carrying apc4 alleles. These plants showed pleiotropic developmental defects in reproductive processes, including abnormal nuclear behavior in the developing embryo sac and aberrant cell division in embryos; these phenotypes differ from those reported for mutants of other subunits. Some ovules and embryos of apc4/+ plants also accumulated cyclin B protein, a known substrate of APC/C, suggesting a compromised function of APC/C. Arabidopsis APC4 was expressed in meristematic cells of seedlings, ovules in pistils and embryos in siliques, and was mainly localized in the nucleus. Additionally, the distribution of auxin was distorted in some embryos of apc4/+ plants. Our results indicate that Arabidopsis APC4 plays critical roles in female gametogenesis and embryogenesis, possibly as a connector in APC/C, and that regulation of auxin distribution may be involved in these processes.  相似文献   

6.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase mediating targeted proteolysis through ubiquitination of protein substrates to control the progression of mitosis. The APC/C recognizes its substrates through two adapter proteins, Cdc20 and Cdh1, which contain similar C-terminal domains composed of seven WD-40 repeats believed to be involved in interacting with their substrates. During the transition from metaphase to anaphase, APC/C-Cdc20 mediates the ubiquitination of securin and cyclin B1, allowing the activation of separase and the onset of anaphase and mitotic exit. APC/C-Cdc20 and APC/C-Cdh1 have overlapping substrates. It is unclear whether they are redundant for mitosis. Using a gene-trapping approach, we have obtained mice which lack Cdc20 function. These mice show failed embryogenesis. The embryos were arrested in metaphase at the two-cell stage with high levels of cyclin B1, indicating an essential role of Cdc20 in mitosis that is not redundant with that of Cdh1. Interestingly, Cdc20 and securin double mutant embryos could not maintain the metaphase arrest, suggesting a role of securin in preventing mitotic exit.  相似文献   

7.
Kitagawa R  Law E  Tang L  Rose AM 《Current biology : CB》2002,12(24):2118-2123
Accurate chromosome segregation is achieved by a series of highly regulated processes that culminate in the metaphase-to-anaphase transition of the cell cycle. In the budding yeast Saccharomyces cerevisiae, the degradation of the securin protein Pds1 reverses the binding and inhibition of the separase protein Esp1. Esp1 cleaves Scc1. That cleavage promotes the dissociation of the cohesin complex from the chromosomes and leads the separation of sister chromatids. Proteolysis of Pds1 is regulated by the anaphase-promoting complex (APC), a large multi-subunit E3 ubiquitin ligase whose activity is regulated by Cdc20/Fizzy. We have previously shown that the Caenorhabditis elegans genes mdf-1/MAD1 and mdf-2/MAD2 encode key members of the spindle checkpoint. Loss of function of either gene leads to an accumulation of somatic and heritable defects and ultimately results in death. Here we show that a missense mutation in fzy-1/CDC20/Fizzy suppresses mdf-1 lethality. We identified a FZY-1-interacting protein, IFY-1, a novel destruction-box protein. IFY-1 accumulates in one-cell-arrested emb-30/APC4 embryos and interacts with SEP-1, a C. elegans separase, suggesting that IFY-1 functions as a C. elegans securin.  相似文献   

8.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal.  相似文献   

9.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal. Received: 19 August 1997 / Accepted: 11 December 1997  相似文献   

10.
11.
In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquitin protein ligase that regulates mitotic progression and exit by controlling the stability of cell cycle regulatory proteins, such as securin and the mitotic cyclins. In plants, the function, regulation, and substrates of the APC/C are poorly understood. To gain more insight into the roles of the plant APC/C, we characterized at the molecular level one of its subunits, APC2, which is encoded by a single-copy gene in Arabidopsis. We show that the Arabidopsis gene is able to partially complement a budding yeast apc2 ts mutant. By yeast two-hybrid assays, we demonstrate an interaction of APC2 with two other APC/C subunits: APC11 and APC8/CDC23. A reverse-genetic approach identified Arabidopsis plants carrying T-DNA insertions in the APC2 gene. apc2 null mutants are impaired in female megagametogenesis and accumulate a cyclin-beta-glucuronidase reporter protein but do not display metaphase arrest, as observed in other systems. The APC2 gene is expressed in various plant organs and does not seem to be cell cycle regulated. Finally, we report intriguing differences in APC2 protein subcellular localization compared with that in other systems. Our observations support a conserved function of the APC/C in plants but a different mode of regulation.  相似文献   

12.
The metaphase to anaphase transition is a critical stage of the eukaryotic cell cycle, and, thus, it is highly regulated. Errors during this transition can lead to chromosome segregation defects and death of the organism. In genetic screens for temperature-sensitive maternal effect embryonic lethal (Mel) mutants, we have identified 32 mutants in the nematode Caenorhabditis elegans in which fertilized embryos arrest as one-cell embryos. In these mutant embryos, the oocyte chromosomes arrest in metaphase of meiosis I without transitioning to anaphase or producing polar bodies. An additional block in M phase exit is evidenced by the failure to form pronuclei and the persistence of phosphohistone H3 and MPM-2 antibody staining. Spermatocyte meiosis is also perturbed; primary spermatocytes arrest in metaphase of meiosis I and fail to produce secondary spermatocytes. Analogous mitotic defects cause M phase delays in mitotic germline proliferation. We have named this class of mutants "mat" for metaphase to anaphase transition defective. These mutants, representing six different complementation groups, all map near genes that encode subunits of the anaphase promoting complex or cyclosome, and, here, we show that one of the genes, emb-27, encodes the C. elegans CDC16 ortholog.  相似文献   

13.
K Ishii  K Kumada  T Toda    M Yanagida 《The EMBO journal》1996,15(23):6629-6640
Ubiquitin-dependent proteolysis is required for the onset of anaphase. We show that protein dephosphorylation by protein phosphatase 1 (PP1) is also essential for initiating anaphase in fission yeast. PP1 may directly or indirectly regulate the 20S cyclosome/APC (anaphase-promoting complex) required for anaphase-promoting proteolysis. Using anti-phosphopeptide antibodies, PP1 is shown to be dephosphorylated at the C-terminus, upon the onset of anaphase, for reactivation. sds23+, a novel gene, is a multicopy suppressor for mutations in PP1 and the 20S cyclosome/APC, implying that the gene dosage increase can relieve the requirement for PP1 and the cyclosome/APC for the onset of anaphase. The sds23+ gene is not essential for cell viability, but a mutant with the gene deleted cannot form colonies at 22 and 36 degrees C. In the sds23 deletion mutant, the progression of anaphase and cytokinesis is retarded and cell shape is aberrant. These defects are overcome by plasmids carrying the genes encoding subunits of the 20S cyclosome/APC or PP1. These results demonstrate functions other than promoting anaphase for the components of the 20S cyclosome/APC and also a close functional relationship of Sds23 with PP1 and 20S cyclosome/APC.  相似文献   

14.
Bezler A  Gönczy P 《Genetics》2010,186(4):1271-1283
The anaphase promoting complex/cyclosome (APC/C) triggers the separation of sister chromatids and exit from mitosis across eukaryotic evolution. The APC/C is inhibited by the spindle assembly checkpoint (SAC) until all chromosomes have achieved bipolar attachment, but whether the APC/C reciprocally regulates the SAC is less understood. Here, we report the characterization of a novel allele of the APC5 component SUCH-1 in Caenorhabditis elegans. We find that some such-1(t1668) embryos lack paternally contributed DNA and centrioles and assemble a monopolar spindle in the one-cell stage. Importantly, we show that mitosis is drastically prolonged in these embryos, as well as in embryos that are otherwise compromised for APC/C function and assemble a monopolar spindle. This increased duration of mitosis is dependent on the SAC, since inactivation of the SAC components MDF-1/MAD1 or MDF-2/MAD2 rescues proper timing in these embryos. Moreover, partial depletion of the E1 enzyme uba-1 significantly increases mitosis duration upon monopolar spindle assembly. Taken together, our findings raise the possibility that the APC/C negatively regulates the SAC and, therefore, that the SAC and the APC/C have a mutual antagonistic relationship in C. elegans embryos.  相似文献   

15.
The complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.  相似文献   

16.
The anaphase-promoting complex (APC) is an E3 ubiquitin ligase which controls ubiquitination and degradation of multiple cell cycle regulatory proteins. During infection, human cytomegalovirus (HCMV), a widespread pathogen, not only phosphorylates the APC coactivator Cdh1 via the multifunctional viral kinase pUL97, it also promotes degradation of APC subunits via an unknown mechanism. Using a proteomics approach, we found that a recently identified HCMV protein, pUL21a, interacted with the APC. Importantly, we determined that expression of pUL21a was necessary and sufficient for proteasome-dependent degradation of APC subunits APC4 and APC5. This resulted in APC disruption and required pUL21a binding to the APC. We have identified the proline-arginine amino acid pair at residues 109–110 in pUL21a to be critical for its ability to bind and regulate the APC. A point mutant virus in which proline-arginine were mutated to alanines (PR-AA) grew at wild-type levels. However, a double mutant virus in which the viral ability to regulate the APC was abrogated by both PR-AA point mutation and UL97 deletion was markedly more attenuated compared to the UL97 deletion virus alone. This suggests that these mutations are synthetically lethal, and that HCMV exploits two viral factors to ensure successful disruption of the APC to overcome its restriction on virus infection. This study reveals the HCMV protein pUL21a as a novel APC regulator and uncovers a unique viral mechanism to subvert APC activity.  相似文献   

17.
Improper attachment of the mitotic spindle to the kinetochores of paired sister chromatids in mitosis is monitored by a checkpoint that leads to an arrest in early metaphase. This arrest requires the inhibitory association of Mad2 with the anaphase promoting complex/cyclosome (APC/C). It is not known how the association of Mad2 with the kinetochore and the APC/C is regulated in mitosis. Here, we demonstrate that human Mad2 is modified through phosphorylation on multiple serine residues in vivo in a cell cycle dependent manner and that only unphosphorylated Mad2 interacts with Mad1 or the APC/C in vivo. A Mad2 mutant containing serine to aspartic acid mutations mimicking the C-terminal phosphorylation events fails to interact with Mad1 or the APC/C and acts as a dominant-negative antagonist of wild-type Mad2. These data suggest that the phosphorylation state of Mad2 regulates its checkpoint activity by modulating its association with Mad1 and the APC/C.  相似文献   

18.
The anaphase-promoting complex/cyclosome (APC) is a highly conserved ubiquitin ligase that controls passage through the cell cycle by targeting many proteins for proteolysis. The complex is composed of at least thirteen core subunits, eight of which are essential, and two activating subunits, Cdc20 (essential) and Cdh1/Hct1 (non-essential). Previously, it was not known which APC targets are sufficient to explain the essential nature of the complex. Here, we show that each of the eight normally essential APC subunits is rendered non-essential ('bypass-suppressed') by the simultaneous removal/inhibition of the APC substrates securin (Pds1) and B-type cyclin/CDK (Clb/CDK). In strains lacking the APC, levels of Clb2 and Clb3 remain constant, but Clb/CDK activity oscillates as cells cycle. This suggests that in the absence of B-type cyclin destruction, oscillation of the Clb/CDK-inhibitor Sic1 is sufficient to trigger the feedback loops necessary for the bi-stable nature of Clb/CDK activity. These results strongly suggest that securin and B-type cyclin/CDK activity are the only obligatory targets of the APC in Saccharomyces cerevisiae.  相似文献   

19.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (cryo-EM). Docking of tetratricopeptide repeat (TPR)-containing subunits indicates that they likely form a scaffold-like outer shell, mediating assembly of the complex and providing potential binding sites for regulators and substrates. Quantitative determination of subunit stoichiometry indicates multiple copies of specific subunits, consistent with a total APC/C mass of approximately 1.7 MDa. Moreover, yeast APC/C forms both monomeric and dimeric species. Dimeric APC/C is a more active E3 ligase than the monomer, with greatly enhanced processivity. Our data suggest that multimerisation and/or the presence of multiple active sites facilitates the APC/C's ability to elongate polyubiquitin chains.  相似文献   

20.
Ubiquitin-mediated proteolysis of securin and mitotic cyclins is essential for exit from mitosis. The final step in ubiquitination of these and other proteins is catalysed by the anaphase-promoting complex (APC), a multi-subunit ubiquitin-protein ligase (E3). Little is known about the molecular reaction resulting in APC-dependent substrate ubiquitination or the role of individual APC subunits in the reaction. Using a well-defined in vitro system, we show that highly purified APC from Saccharomyces cerevisiae ubiquitinates a model cyclin substrate in a processive manner. Analysis of mutant APC lacking the Doc1/Apc10 subunit (APC(doc1 Delta)) indicates that Doc1 is required for processivity. The specific molecular defect in APC(doc1 Delta) is identified by a large increase in apparent K(M) for the cyclin substrate relative to the wild-type enzyme. This suggests that Doc1 stimulates processivity by limiting substrate dissociation. Addition of recombinant Doc1 to APC(doc1 Delta) fully restores enzyme function. Doc1-related domains are found in mechanistically distinct ubiquitin-ligase enzymes and may generally stimulate ubiquitination by contributing to substrate-enzyme affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号