首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human genome contains about 1.5 million Alu elements, which are transcribed into Alu RNAs by RNA polymerase III. Their expression is upregulated following stress and viral infection, and they associate with the SRP9/14 protein dimer in the cytoplasm forming Alu RNPs. Using cell-free translation, we have previously shown that Alu RNPs inhibit polysome formation. Here, we describe the mechanism of Alu RNP-mediated inhibition of translation initiation and demonstrate its effect on translation of cellular and viral RNAs. Both cap-dependent and IRES-mediated initiation is inhibited. Inhibition involves direct binding of SRP9/14 to 40S ribosomal subunits and requires Alu RNA as an assembly factor but its continuous association with 40S subunits is not required for inhibition. Binding of SRP9/14 to 40S prevents 48S complex formation by interfering with the recruitment of mRNA to 40S subunits. In cells, overexpression of Alu RNA decreases translation of reporter mRNAs and this effect is alleviated with a mutation that reduces its affinity for SRP9/14. Alu RNPs also inhibit the translation of cellular mRNAs resuming translation after stress and of viral mRNAs suggesting a role of Alu RNPs in adapting the translational output in response to stress and viral infection.  相似文献   

2.
The mammalian Alu domain of the signal recognition particle (SRP) consists of a heterodimeric protein SRP9/14 and the Alu portion of 7SL RNA and comprises the elongation arrest function of the particle. To define the domain in Saccharomyces cerevisiae SRP that is homologous to the mammalian Alu domain [Alu domain homolog in yeast (Adhy)], we examined the assembly of a yeast protein homologous to mammalian SRP14 (Srp14p) and scR1 RNA. Srp14p binds as a homodimeric complex to the 5' sequences of scR1 RNA. Its minimal binding site consists of 99 nt. (Adhy RNA), comprising a short hairpin structure followed by an extended stem. As in mammalian SRP9/14, the motif UGUAAU present in most SRP RNAs is part of the Srp14p binding sites as shown by footprint and mutagenesis studies. In addition, certain basic amino acid residues conserved between mammalian SRP14 and Srp14p are essential for RNA binding in both proteins. These findings confirm the common ancestry of the yeast and the mammalian components and indicate that Srp14p together with Adhy RNA represents the Alu domain homolog in yeast SRP that may comprise its elongation arrest function. Despite the similarities, Srp14p selectively recognizes only scR1 RNA, revealing substantial changes in RNA-protein recognition as well as in the overall structure of the complex. The alignment of the three yeast SRP RNAs known to date suggests a common structure for the putative elongation arrest domain of all three organisms.  相似文献   

3.
4.
Binding of the signal recognition particle (SRP) to signal sequences during translation leads to an inhibition of polypeptide elongation known as translation arrest. The arrest activity is mediated by a discrete domain comprised of the Alu portion of SRP RNA and a 9 and 14 kDa polypeptide heterodimer (SRP9/14). Although very few nucleotides in SRP RNA are conserved throughout evolution, the remarkable conservation of G24, which resides in the region of SRP9/14 interaction, suggests that it is essential for translation arrest. To understand the functional significance of the G24 residue, we made single base substitutions in SRP RNA at this position and analyzed the ability of the mutants to bind SRP9/14 and to reconstitute functional SRPs. Mutation of G24 to C reduced binding to SRP9/14 by at least 50-fold, whereas mutation to A and U reduced binding approximately 2- and 5-fold respectively. The mutant RNAs could nevertheless assemble into SRPs at high subunit concentrations. SRPs reconstituted with mutant RNAs were not significantly defective in translation arrest assays, indicating that the conserved guanosine does not interact directly with the translational machinery. Taken together, these results demonstrate that G24 plays an important role in the translation arrest function of SRP by mediating high affinity binding of SRP9/14.  相似文献   

5.
D E Birse  U Kapp  K Strub  S Cusack    A Aberg 《The EMBO journal》1997,16(13):3757-3766
The mammalian signal recognition particle (SRP) is an 11S cytoplasmic ribonucleoprotein that plays an essential role in protein sorting. SRP recognizes the signal sequence of the nascent polypeptide chain emerging from the ribosome, and targets the ribosome-nascent chain-SRP complex to the rough endoplasmic reticulum. The SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide RNA molecule. SRP9 and SRP14 proteins form a heterodimer that binds to the Alu domain of SRP RNA which is responsible for translation arrest. We report the first crystal structure of a mammalian SRP protein, that of the mouse SRP9/14 heterodimer, determined at 2.5 A resolution. SRP9 and SRP14 are found to be structurally homologous, containing the same alpha-beta-beta-beta-alpha fold. This we designate the Alu binding module (Alu bm), an additional member of the family of small alpha/beta RNA binding domains. The heterodimer has pseudo 2-fold symmetry and is saddle like, comprising a strongly curved six-stranded amphipathic beta-sheet with the four helices packed on the convex side and the exposed concave surface being lined with positively charged residues.  相似文献   

6.
Trypanosomatids are ancient eukaryotic parasites affecting humans and livestock. Here we report that the trypanosomatid signal recognition particle (SRP), unlike all other known SRPs in nature, contains, in addition to the 7SL RNA homologue, a short RNA molecule, termed sRNA-85. Using conventional chromatography, we discovered a small RNA molecule of 85 nucleotides co-migrating with the Leptomonas collosoma 7SL RNA. This RNA molecule was isolated, sequenced, and used to clone the corresponding gene. sRNA-85 was identified as a tRNA-like molecule that deviates from the canonical tRNA structure. The co-existence of these RNAs in a single complex was confirmed by affinity selection using an antisense oligonucleotide to sRNA-85. The two RNA molecules exist in a particle of approximately 14 S that binds transiently to ribosomes. Mutations were introduced in sRNA-85 that disrupted its putative potential to interact with 7SL RNA by base pairing; such mutants were unable to bind to 7SL RNA and to ribosomes and were aberrantly distributed within the cell. We postulate that sRNA-85 may functionally replace the truncated Alu domain of 7SL RNA. The discovery of sRNA-85 raises the intriguing possibility that sRNA-85 functional homologues may exist in other lower eukaryotes and eubacteria that lack the Alu domain.  相似文献   

7.
We have identified functionally and analyzed a minimal Alu RNA folding domain that is recognized by SRPphi14-9. Recombinant SRPphi14-9 is a fusion protein containing on a single polypeptide chain the sequences of both the SRP14 and SRP9 proteins that are part of the Alu domain of the signal recognition particle (SRP). SRPphi14-9 has been shown to bind to the 7SL RNA of SRP and it confers elongation arrest activity to reconstituted SRP in vitro. Alu RNA variants with homogeneous 3' ends were produced in vitro using ribozyme technology and tested for specific SRPphi14-9 binding in a quantitative equilibrium competition assay. This enabled identification of an Alu RNA of 86 nt (SA86) that competes efficiently with 7SL RNA for SRPphi14-9 binding, whereas smaller RNAs did not. The secondary structure of SA86 includes two stem-loops that are connected by a highly conserved bulge and, in addition, a part of the central adaptor stem that contains the sequence at the very 3' end of 7SL RNA. Circularly permuted variants of SA86 competed only if the 5' and 3' ends were joined with an extended linker of four nucleotides. SA86 can thus be defined as an autonomous RNA folding unit that does not require its 5' and 3' ends for folding or for specific recognition by SRPphi14-9. These results suggest that Alu RNA identity is determined by a characteristic tertiary structure, which might consist of two flexibly linked domains.  相似文献   

8.
The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membrane is correctly engaged. Here we present biochemical and biophysical evidence for a hierarchical assembly pathway of the SRP Alu domain. The proteins SRP9 and SRP14 first heterodimerize and then initially bind to the Alu RNA 5' domain. This creates the binding site for the Alu RNA 3' domain. Alu RNA then undergoes a large conformational change with the flexibly linked 3' domain folding back by 180 degrees onto the 5' domain complex to form the final compact Alu ribonucleoprotein particle (Alu RNP). We discuss the possible mechanistic consequences of the likely reversibility of this final step with reference to translational regulation by the SRP Alu domain and with reference to the structurally similar Alu RNP retroposition intermediates derived from Alu elements in genomic DNA.  相似文献   

9.
The mammalian signal recognition particle (SRP) is a small cytoplasmic ribonucleoprotein required for the cotranslational targeting of secretory proteins to the endoplasmic reticulum membrane. The heterodimeric protein subunit SRP9/14 was previously shown to be essential for SRP to cause pausing in the elongation of secretory protein translation. RNase protection and filter binding experiments have shown that binding of SRP9/14 to SRP RNA depends solely on sequences located in a domain of SRP RNA that is strongly homologous to the Alu family of repetitive DNA sequences. In addition, the use of hydroxyl radicals, as RNA-cleaving reagents, has revealed four distinct regions in this domain that are in close contact with SRP9/14. Surprisingly, the nucleotide sequence in one of these contact sites, predicted to be mostly single stranded, was found to be extremely conserved in SRP RNAs of evolutionarily distant organisms ranging from eubacteria and archaebacteria to yeasts and higher eucaryotic cells. This finding suggests that SRP9/14 homologs may also exist in these organisms, where they possibly contribute to the regulation of protein synthesis similar to that observed for mammalian SRP in vitro.  相似文献   

10.
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.  相似文献   

11.
12.
Y Thomas  N Bui    K Strub 《Nucleic acids research》1997,25(10):1920-1929
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.  相似文献   

13.
The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).  相似文献   

14.
15.
Prediction of signal recognition particle RNA genes   总被引:3,自引:1,他引:3  
We describe a method for prediction of genes that encode the RNA component of the signal recognition particle (SRP). A heuristic search for the strongly conserved helix 8 motif of SRP RNA is combined with covariance models that are based on previously known SRP RNA sequences. By screening available genomic sequences we have identified a large number of novel SRP RNA genes and we can account for at least one gene in every genome that has been completely sequenced. Novel bacterial RNAs include that of Thermotoga maritima, which, unlike all other non-gram-positive eubacteria, is predicted to have an Alu domain. We have also found the RNAs of Lactococcus lactis and Staphylococcus to have an unusual UGAC tetraloop in helix 8 instead of the normal GNRA sequence. An investigation of yeast RNAs reveals conserved sequence elements of the Alu domain that aid in the analysis of these RNAs. Analysis of the human genome reveals only two likely genes, both on chromosome 14. Our method for SRP RNA gene prediction is the first convenient tool for this task and should be useful in genome annotation.  相似文献   

16.
In a rare occasion a single chromosomal locus was targeted twice by independent Alu-related retroposon insertions, and in both cases supported neuronal expression of the respective inserted genes encoding small non-protein coding RNAs (npcRNAs): BC200 RNA in anthropoid primates and G22 RNA in the Lorisoidea branch of prosimians. To avoid primate experimentation, we generated transgenic mice to study neuronal expression and protein binding partners for BC200 and G22 npcRNAs. The BC200 gene, with sufficient upstream flanking sequences, is expressed in transgenic mouse brain areas comparable to those in human brain, and G22 gene, with upstream flanks, has a similar expression pattern. However, when all upstream regions of the G22 gene were removed, expression was completely abolished, despite the presence of intact internal RNA polymerase III promoter elements. Transgenic BC200 RNA is transported into neuronal dendrites as it is in human brain. G22 RNA, almost twice as large as BC200 RNA, has a similar subcellular localization. Both transgenically expressed npcRNAs formed RNP complexes with poly(A) binding protein and the heterodimer SRP9/14, as does BC200 RNA in human. These observations strongly support the possibility that the independently exapted npcRNAs have similar functions, perhaps in translational regulation of dendritic protein biosynthesis in neurons of the respective primates.  相似文献   

17.
N Bui  N Wolff  S Cusack    K Strub 《RNA (New York, N.Y.)》1997,3(7):748-763
Two polypeptides of the murine signal recognition particle (SRP), SRP9 and SRP14, bind exclusively as a heterodimer to SRP RNA and their presence is required for elongation arrest activity of the particle. SRP9/14 also constitute a subunit of small cytoplasmic Alu RNPs. To identify RNA-binding determinants, we assayed the dimerization and RNA-binding capacities of altered proteins in vitro. Despite the structural homology of the two proteins, their requirements for dimerization differ substantially. In SRP9, an internal fragment of 43 amino acids is sufficient to allow dimer formation, whereas in SRP14 only few changes, such as removing an internal loop region, are tolerated without affecting its dimerization activity. The dimerization defect of the SRP14 proteins is most likely explained by a reduced stability or ability to fold of the proteins. Interestingly, SRP RNA can engage certain dimerization-defective SRP14 proteins into stable complexes, suggesting that low-affinity interactions between the RNA and SRP14 may help to overcome the folding defect or the reduced stability of the proteins. We identified two regions, one in each protein, that are essential for RNA-binding. In SRP9, acidic amino acid residues in the N-terminal alpha-helix and the adjacent loop and, in SRP14, a flexible internal loop region are critical for RNA-binding. In the heterodimer, the two regions are located in close proximity, consistent with the RNA-binding region being formed by both proteins.  相似文献   

18.
The mammalian SRP (signal recognition particle) represents an important model for the assembly and role of inter-domain interactions in complex RNPs (ribonucleoproteins). In the present study we analysed the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apices of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either co-operative or energetically neutral interactions among components. By contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs.  相似文献   

19.
20.
F Bovia  N Bui    K Strub 《Nucleic acids research》1994,22(11):2028-2035
The targeting of nascent polypeptide chains to the endoplasmic reticulum is mediated by a cytoplasmic ribonucleoprotein, the signal recognition particle (SRP). The 9 kD (SRP9) and the 14 kD (SRP14) subunits of SRP are required to confer elongation arrest activity to the particle. SRP9 and SRP14 form a heterodimer which specifically binds to SRP RNA. We have constructed cDNAs that encode single polypeptide chains comprising SRP9 and SRP14 sequences in the two possible permutations linked by a 17 amino acid peptide. We found that both fusion proteins specifically bound to SRP RNA as monomeric molecules folded into a heterodimer-like structure. Our results corroborate the previous hypothesis that the authentic heterodimer binds to SRP RNA in equimolar ratio. In addition, both fusion proteins conferred elongation arrest activity to SRP(-9/14), which lacks this function, and one fusion protein could functionally replace the heterodimer in the translocation assay. Thus, the normal N-and C-termini of both proteins have no essential role in folding, RNA-binding and in mediating the biological activities. The possibility to express the heterodimeric complex as a single polypeptide chain facilitates the analysis of its functions and its structure in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号