首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have purified GST-fused recombinant mouse Dnmt3a and three isoforms of mouse Dnmt3b to near homogeneity. Dnmt3b3, an isoform of Dnmt3b, did not have DNA methylation activity. Dnmt3a, Dnmt3b1 or Dnmt3b2 showed similar activity toward poly(dG-dC)-poly(dG-dC) for measuring de novo methylation activity, and toward poly(dI-dC)-poly(dI-dC) for measuring total activity. This indicates that the enzymes are de novo-type DNA methyltransferases. The enzyme activity was inhibited by NaCl or KCl at concentrations >100 mM. The kinetic parameter, KmAdoMet, for Dnmt3a, Dnmt3b1 and Dnmt3b2 was 0.4, 1.2 and 0.9 µM when poly(dI-dC)-poly(dI-dC) was used, and 0.3, 1.2 and 0.8 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. The KmDNA values for Dnmt3a, Dnmt3b1 and Dnmt3b2 were 2.7, 1.3 and 1.5 µM when poly(dI-dC)-poly(dI-dC) was used, and 3.5, 1.0 and 0.9 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. For the methylation specificity, Dnmt3a significantly methylated CpG >> CpA. On the other hand, Dnmt3b1 methylated CpG > CpT ≥ CpA. Immuno-purified Dnmt3a, Myc-tagged and overexpressed in HEK 293T cells, methylated CpG >> CpA > CpT. Neither Dnmt3a nor Dnmt3b1 methylated the first cytosine of CpC.  相似文献   

2.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns. Dnmt3L, a member of the Dnmt3 family, has been reported to be necessary for maternal methylation imprinting, possibly by interacting with Dnmt3a and/or Dnmt3b (Hata, K., Okano, M., Lei, H., and Li, E. (2002) Development 129, 1983-1993). In the present study, the effect of DNMT3L, a human homologue of Dnmt3L, on the DNA methylation activity of mouse Dnmt3a and Dnmt3b was examined in vitro. DNMT3L enhanced the DNA methylation activity of Dnmt3a and Dnmt3b about 1.5-3-fold in a dose-dependent manner but did not enhance the DNA methylation activity of Dnmt1. Although the extents of stimulation were different, a stimulatory effect on the DNA methylation activity was observed for all of the substrate DNA sequences examined, such as those of the maternally methylated SNRPN and Lit-1 imprinting genes, the paternally methylated H19 imprinting gene, the CpG island of the myoD gene, the 5 S ribosomal RNA gene, an artificial 28-bp DNA, poly(dG-dC)-poly(dG-dC), and poly(dI-dC)-poly(dI-dC). DNMT3L could not bind to DNA but could bind to Dnmt3a and Dnmt3b, indicating that the stimulatory effect of DNMT3L on the DNA methylation activity may not be due to the guiding of Dnmt3a and Dnmt3b to the targeting DNA sequence but may comprise a direct effect on their catalytic activity. The carboxyl-terminal half of DNMT3L was found to be responsible for the enhancement of the enzyme activity.  相似文献   

3.
A Dnmt2-like protein mediates DNA methylation in Drosophila   总被引:9,自引:0,他引:9  
The methylation status of Drosophila DNA has been discussed controversially over a long time. Recent evidence has provided strong support for the existence of 5-methylcytosine in DNA preparations from embryonic stages of fly development. The Drosophila genome contains a single candidate DNA methyltransferase gene that has been termed Dnmt2. This gene belongs to a widely conserved family of putative DNA methyltransferases. However, no catalytic activity has been demonstrated for any Dnmt2-like protein yet. We have now established a protocol for the immunological detection of methylated cytosine in fly embryos. Confocal analysis of immunostained embryos provided direct evidence for the methylation of embryonic DNA. In order to analyse the function of Dnmt2 in DNA methylation, we depleted the protein by RNA interference. Depletion of Dnmt2 had no detectable effect on embryonic development and resulted in a complete loss of DNA methylation. Consistently, overexpression of Dnmt2 from an inducible transgene resulted in significant genomic hypermethylation at CpT and CpA dinucleotides. These results demonstrate that Dnmt2 is both necessary and sufficient for DNA methylation in Drosophila and suggest a novel CpT/A-specific DNA methyltransferase activity for Dnmt2 proteins.  相似文献   

4.
Site-specific methylation of cytosines is a key epigenetic mark of vertebrate DNA. While a majority of the methylated residues are in the symmetrical (meC)pG:Gp(meC) configuration, a smaller, but significant fraction is found in the CpA, CpT and CpC asymmetric (non-CpG) dinucleotides. CpG methylation is reproducibly maintained by the activity of the DNA methyltransferase 1 (Dnmt1) on the newly replicated hemimethylated substrates (meC)pG:GpC. On the other hand, establishment and hereditary maintenance of non-CpG methylation patterns have not been analyzed in detail. We previously reported the occurrence of site- and allele-specific methylation at both CpG and non-CpG sites. Here we characterize a hereditary complex of non-CpG methylation, with the transgenerational maintenance of three distinct profiles in a constant ratio, associated with extensive CpG methylation. These observations raised the question of the signal leading to the maintenance of the pattern of asymmetric methylation. The complete non-CpG pattern was reinstated at each generation in spite of the fact that the majority of the sperm genomes contained either none or only one methylated non-CpG site. This observation led us to the hypothesis that the stable CpG patterns might act as blueprints for the maintenance of non-CpG DNA methylation. As predicted, non-CpG DNA methylation profiles were abrogated in a mutant lacking Dnmt1, the enzymes responsible for CpG methylation, but not in mutants defective for either Dnmt3a or Dnmt2.  相似文献   

5.
The putative de novo methyltransferases, Dnmt3a and Dnmt3b, were reported to have weak methyltransferase activity in methylating the 3' long terminal repeat of Moloney murine leukemia virus in vitro. The activity of these enzymes was evaluated in vivo, using a stable episomal system that employs plasmids as targets for DNA methylation in human cells. De novo methylation of a subset of the CpG sites on the stable episomes is detected in human cells overexpressing the murine Dnmt3a or Dnmt3b1 protein. This de novo methylation activity is abolished when the cysteine in the P-C motif, which is the catalytic site of cytosine methyltransferases, is replaced by a serine. The pattern of methylation on the episome is nonrandom, and different regions of the episome are methylated to different extents. Furthermore, Dnmt3a also methylates the sequence methylated by Dnmt3a on the stable episome in the corresponding chromosomal target. Overexpression of human DNMT1 or murine Dnmt3b does not lead to the same pattern or degree of de novo methylation on the episome as overexpression of murine Dnmt3a. This finding suggests that these three enzymes may have different targets or requirements, despite the fact that weak de novo methyltransferase activity has been demonstrated in vitro for all three enzymes. It is also noteworthy that both Dnmt3a and Dnmt3b proteins coat the metaphase chromosomes while displaying a more uniform pattern in the nucleus. This is the first evidence that Dnmt3a and Dnmt3b have de novo methyltransferase function in vivo and the first indication that the Dnmt3a and Dnmt3b proteins may have preferred target sites.  相似文献   

6.
The only natural postsynthetic modification known to occur in mammalian DNA is the methylation in the 5 position of deoxycytidines. Of the four 5'-CpN-3' dinucleotides (ie. CpG, CpC, CpA, and CpT), the dinucleotide which contains the highest proportion of deoxycytidines methylated is CpG, with 40 to 80% methylation in different mammalian genomes. It has also been shown that CpA, CpT, and CpC are methylated as well but to a much lower extent. Here we report the result of a full nearest neighbour analysis (together with quantitation of methylation levels in the 4 CpN dinucleotides) for DNA from human spleen. Using the values we have calculated the overall frequencies for all the methylated dinucleotides in the human genome. Because of the relative underrepresentation (by 7 to 10 fold) of the CpG dinucleotide, only 45.5% of total mC was present in mCpG, with 54.5% in mCpA, mCpT plus mCpC. These calculations have implications for studies into the function and significance of DNA methylation in mammalian cells.  相似文献   

7.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. De novo type DNA methyltransferases Dnmt3a and Dnmt3b are responsible for creating DNA methylation patterns during embryogenesis and in germ cells. Although their in vitro DNA methylation properties are similar, Dnmt3a and Dnmt3b methylate different genomic DNA regions in vivo. In the present study, we have examined the DNA methylation activity of Dnmt3a and Dnmt3b towards nucleosomes reconstituted from recombinant histones and DNAs, and compared it to that of the corresponding naked DNAs. Dnmt3a showed higher DNA methylation activity than Dnmt3b towards naked DNA and the naked part of nucleosomal DNA. On the other hand, Dnmt3a scarcely methylated the DNA within the nucleosome core region, while Dnmt3b significantly did, although the activity was low. We propose that the preferential DNA methylation activity of Dnmt3a towards the naked part of nucleosomal DNA and the significant methylation activity of Dnmt3b towards the nucleosome core region contribute to their distinct methylation of genomic DNA in vivo.  相似文献   

8.
9.
De novo DNA methyltransferases, Dnmt3a and 3b, were purified by fractionation of S-100 extract from mouse lymphosarcoma cells through several chromatographic matrices followed by glycerol density gradient centrifugation. Dnmt3a was separated from Dnmt3b and Dnmt1 in the first column, Q-Sepharose whereas Dnmt3b co-purified with Dnmt1 after further fractionation through Mono-S and Mono-Q columns and glycerol density gradient centrifugation. Following purification, the majority of de novo DNA methyltransfearse activity was associated with Dnmt3b/Dnmt1 fractions. By contrast, the fractions containing Dnmt3a alone exhibited markedly reduced activity, which correlated with diminished expression of this isoform in these cells. Histone deacetylase 1(Hdac1) cofractionated with Dnmt3a throughout purification whereas Hdac1 was separated from Dnmt3b/Dnmt1 following chromatography on Mono-Q column. Dnmt3a purified through glycerol gradient centrifugation was also associated with a histone H3 methyltransferase (HMTase) activity whereas purified Dnmt3b/Dnmt1 was devoid of any HMTase activity. The activity of this HMTase was abolished when lysine 9 of N-terminal histone H3 peptide was replaced by leucine whereas mutation of lysine 4 to leucine inhibited this activity only partially. This is the first report on the identification of a few key co-repressors associated with endogenous Dnmt3a and of a complex containing Dnmt3b and a minor form of Dnmt1 following extensive biochemical fractionation.  相似文献   

10.
We report the relative molar sound velocity increments, [U], partial molar volumes, V(o), and partial molar adiabatic compressibilities, K(S)(o), of the Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and N(CH(3))(4)(+) salts of poly(dAdT)poly(dAdT), poly(dGdC)poly(dGdC), poly(dIdC)poly(dIdC), poly(rA)poly(rU), poly(rG)poly(rC), poly(rI)poly(rC), and poly(rU) at 25 degrees C. When analyzing these data, we take into account the Donnan membrane equilibrium effect. Comparison between the values of [U], V(o), and K(S)(o) exhibited by the nucleic acid salts and respective chlorides (LiCl, NaCl, KCl, RbCl, CsCl, NH(4)Cl, and N(CH(3))(4)Cl) yields information about the state of counterion hydration in the vicinity of each nucleic acid structure studied here. Our analysis reveals that the poly(dGdC)poly(dGdC), poly(dIdC)poly(dIdC), and poly(rI)poly(rC) duplexes and single-stranded poly(rU) do not significantly influence the hydration properties of their condensed counterions. In the vicinity of these polymers, counterions retain their full hydration shells (within +/-15%). By contrast, counterions condensed around the poly(dAdT)poly(dAdT), poly(rA)poly(rU), and poly(rG)poly(rC) duplexes are significantly dehydrated and retain, respectively, only 65(+/-18)%, 34(+/-21)%, and 33(+/-9)% of their original hydration shells. Taken together, the volumetric data reported here provide important new information that ultimately may help us understand the central role that hydration and counterions play in modulating the conformational preferences of nucleic acids and the energetics of DNA recognition events.  相似文献   

11.
Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.  相似文献   

12.
Quantification of DNA methyltransferases Dnmt3a and Dnmt3a2, and Dnmt3L in isolated male gonocytes in day 16.5 embryos confirmed that not Dnmt3a but Dnmt3a2 and Dnmt3L were the major Dnmt3s. The expression level of Dnmt3L constituted 5- to 10-fold molar excess compared to that of Dnmt3a2. The stimulation property of the DNA methylation activity of Dnmt3a2 with Dnmt3L towards substrate DNA in naked or nucleosomes was similar to that of Dnmt3a. However, the DNA methylation activity of not Dnmt3a but Dnmt3a2 was severely inhibited at the physiological salt concentration. Interestingly, the activity of Dnmt3a2 was significantly detected in the presence of Dnmt3L even at the physiological salt concentration. This indicates that Dnmt3a2 functions only in the presence of Dnmt3L in male gonocytes, and may explain why Dnmt3L is required specifically in mouse gonocytes for DNA methylation.  相似文献   

13.
Dnmt3a and Dnmt3b are paralogous enzymes responsible for de novo DNA methylation but with distinguished biological functions. In mice, disruption of Dnmt3b but not Dnmt3a causes global DNA hypomethylation, especially in repetitive sequences, which comprise the large majority of methylated DNA in the genome. By measuring DNA methylation activity of Dnmt3a and Dnmt3b homologues from five species, we found that mammalian Dnmt3b possessed significantly higher methylation activity on chromatin DNA than Dnmt3a and non-mammalian Dnmt3b. Sequence comparison and mutagenesis experiments identified a single amino acid substitution (I662N) in mammalian Dnmt3b as being crucial for its high chromatin DNA methylation activity. Further mechanistic studies demonstrated this substitution markedly enhanced the binding of Dnmt3b to nucleosomes and hence increased the chromatin DNA methylation activity. Moreover, this substitution was crucial for Dnmt3b to efficiently methylate repetitive sequences, which increased dramatically in mammalian genomes. Consistent with our observation that Dnmt3b evolved more rapidly than Dnmt3a during the emergence of mammals, these results demonstrated that the I662N substitution in mammalian Dnmt3b conferred enhanced chromatin DNA methylation activity and contributed to functional adaptation in the epigenetic system.  相似文献   

14.
CpG methylation is involved in a wide range of biological processes in vertebrates as well as in plants and fungi. To date, three enzymes, Dnmt1, Dnmt3a, and Dnmt3b, are known to have DNA methyltransferase activity in mouse and human. It has been proposed that de novo methylation observed in early embryos is predominantly carried out by the Dnmt3a and Dnmt3b methyltransferases, while Dntm1 is believed to be responsible for maintaining the established methylation patterns upon replication. Analysis of the sites methylated in vivo using the bisulfite genomic sequencing method confirms the previous finding that some regions of the plasmid are much more methylated by Dnmt3a than other regions on the same plasmid. However, the preferred targets of the enzyme cannot be determined due to the presence of other methylases, DNA binding proteins, and chromatin structure. To discern the DNA targets of Dnmt3a without these compounding factors, sites methylated by Dnmt3a in vitro were analyzed. These analyses revealed that the two cDNA strands have distinctly different methylation patterns. Dnmt3a prefers CpG sites on a strand in which it is flanked by pyrimidines over CpG sites flanked by purines in vitro. These findings indicate that, unlike Dnmt1, Dnmt3a most likely methylates one strand of DNA without concurrent methylation of the CpG site on the complementary strand. These findings also indicate that Dnmt3a may methylate some CpG sites more frequently than others, depending on the sequence context. Methylation of each DNA strand independently and with possible sequence preference is a novel feature among the known DNA methyltransferases.  相似文献   

15.
Genomic imprinting is regulated by differential methylation of the paternal and maternal genome. However, it remains unknown how parental imprinting is established during gametogenesis. In this study, we demonstrate that Dnmt3L, a protein sharing homology with DNA methyltransferases, Dnmt3a and Dnmt3b, but lacking enzymatic activity, is essential for the establishment of maternal methylation imprints and appropriate expression of maternally imprinted genes. We also show that Dnmt3L interacts with Dnmt3a and Dnmt3b and co-localizes with these enzymes in the nuclei of transfected cells, suggesting that Dnmt3L may regulate genomic imprinting via the Dnmt3 family enzymes. Consistent with this model, we show that [Dnmt3a(-/-), Dnmt3b(+/-)] mice also fail to establish maternal methylation imprints. In addition, both Dnmt3a and Dnmt3L are required for spermatogenesis. Together, our findings suggest that Dnmt3L may cooperate with Dnmt3 family methyltransferases to carry out de novo methylation of maternally imprinted genes in oocytes.  相似文献   

16.
DNA methylation plays an important role in gene silencing in mammals. Two de novo methyltransferases, Dnmt3a and Dnmt3b, are required for the establishment of genomic methylation patterns in development. However, little is known about their coordinate function in the silencing of genes critical for embryonic development and how their activity is regulated. Here we show that Dnmt3a and Dnmt3b are the major components of a native complex purified from embryonic stem cells. The two enzymes directly interact and mutually stimulate each other both in vitro and in vivo. The stimulatory effect is independent of the catalytic activity of the enzyme. In differentiating embryonic carcinoma or embryonic stem cells and mouse postimplantation embryos, they function synergistically to methylate the promoters of the Oct4 and Nanog genes. Inadequate methylation caused by ablating Dnmt3a and Dnmt3b is associated with dysregulated expression of Oct4 and Nanog during the differentiation of pluripotent cells and mouse embryonic development. These results suggest that Dnmt3a and Dnmt3b form a complex through direct contact in living cells and cooperate in the methylation of the promoters of Oct4 and Nanog during cell differentiation. The physical and functional interaction between Dnmt3a and Dnmt3b represents a novel regulatory mechanism to ensure the proper establishment of genomic methylation patterns for gene silencing in development.  相似文献   

17.
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi‐methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.  相似文献   

18.
19.
An in vitro DNA synthesizing system from mouse fibroblasts has been used to study DNA methylation. DNA methylation occurs in two phases, one at the replication fork and the other farther behind it. Although 4% of the dCMP residues in mouse cell DNA are mdCMP, only 1.7% of the total [alpha 32P]dCMP in newly replicated DNA is methylated in vitro. No methylation of Okazaki fragments was detected. Nearest neighbor analysis of the newly replicated DNA revealed that, although 40% of the CpG dinucleotides were methylated, significant amounts of cytosine methylation were also found in CpC, CpT, and CpA dinucleotides.  相似文献   

20.
The regulatory roles fulfilled by polyamines by governance of chromatin structure are made possible by their strong association with cellular DNA, and hence by their ability to modulate DNA structure and function. Towards this end, it is crucial to understand the manifestation of sequence-dependent polyamine binding at the secondary and tertiary structural levels of DNA. This study utilizes circular dichroism (CD) and isothermal titration calorimetry (ITC) to address this relationship by using 20bp oligonucleotides with sequences-poly(dA):poly(dT), poly(dAdT):poly(dAdT), poly(dG):poly(dC), poly(dGdC):poly(dGdC)-that yield physiologically relevant structures, and poly(dIdC):poly(dIdC). CD studies show that at physiological ionic strength (150mM NaCl), spermine preferentially stabilizes A-tracts, and increases flexibility of the G-tract oligomer; the latter is also suggested by the larger change in entropy (DeltaS) of spermine binding to G-tracts. Given the chromatin destabilizing property of these sequences, these findings suggest a role for spermine in stabilization of non-nucleosomal A-tracts, and a compensating mechanism for incorporation of G-tracts in the chromatin structure. Other implications of these findings in sequence dependent DNA packaging are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号