首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A monoclonal antibody that recognises the C-terminal part of substance P was used to study immunoreactive structures in the substantia nigra by the unlabeled antibody, peroxidase-antiperoxidase procedure. Immunoreactivity was present in nerve fibres in all parts of the substantia nigra, particularly in the pars reticulata and pars lateralis. Electron microscopically two types of bouton immunoreactive for substance P were found: Type 1 contained large electron-lucent vesicles, occasional large granulated vesicles and formed symmetrical synapses with dendrites. Type 2 boutons contained smaller, round electron-lucent vesicles, many large granular vesicles and formed asymmetrical synapses (having prominent postjunctional dense bodies) with dendrites and perikarya.Immunoreactive fibres with varicosities that had been identified light microscopically were studied in serial sections in the electron microscope. Each identified varicosity contained synaptic vesicles and formed a single synapse. An individual fibre formed boutons of only one kind (type 1 or type 2) and could form multiple synapses with the same neuron. Thus, an identified fibre in the pars compacta had eight varicosities, each of which was in synaptic contacts (type 2) with the dendrites or soma of the same neuron.The results are consistent with the concept that substance P is a synaptic transmitter in the substantia nigra and indicate that neurons in this region may receive a significant input from substance P-containing afferents, and that there are at least two types of such afferent fibres.  相似文献   

2.
1. Several weeks after administration of 5,7-dihydroxytryptamine (5,7-DHT) to Aplysia, a dark pigmentation appears in serotonin-containing neurons, and this pigmentation allows visual identification of serotonergic neurons but does not appear to alter their physiology. 2. We have determined the distribution of labeled nerve cell bodies in the various ganglia of Aplysia and have characterized the pigment containing structures in both control and labeled neurons. 3. All neurons in this preparation, whether or not they utilize serotonin as a transmitter, contain pigment granules, and three types of pigment granules can be distinguished. After 5,7-DHT a new type of granule appears in serotonergic neurons, probably reflecting lysosomes that have accumulated serotonergic synaptic vesicles that contain the oxidized 5,7-DHT. 4. It remains unclear why this substance does not cause neurotoxicity in mollusks as it does in mammalian preparations.  相似文献   

3.
1. Light- and electron microscopic investigations prove that synapses, without any exception, are confined to the neuropil. 2. Under the light-microscope, synapses display the shape of terminal boutons at the ends of the nerve fibres; in some cases they appear as smaller or larger plates. Electron microscopic investigations suggest that also varicosities of nerve fibres can be regarded as synapses, though these might have possible arisen from axoplasmatic peristalsis. 3. Electron microscopically the overwhelming majority of the synapses are axodendritic contacts; axo-axonic contacts occur less often. 4. The generally accepted characteristics of synapses are defective. Membrane thickenings and intersynaptic spaces are missing. Accordingly, synapses in the supraoesophageal ganglion of the water beetle differ markedly from those described in Vertebrates. 5. Synaptic vesicles sometimes fill the axoplasm of the nerve fibre completely. In other cases, clusters of synaptic vesicles can be seen, on both sides of the contact. 6. Synaptic vesicles are mixed with neurosecretory granules. Synaptic vesicles may appear also in the dendrites.  相似文献   

4.
The innervation of ventral longitudinal abdominal muscles (muscles 6, 7, 12, and 13) of third-instar Drosophila larvae was investigated with Nomarski, confocal, and electron microscopy to define the ultrastructural features of synapse-bearing terminals. As shown by previous workers, muscles 6 and 7 receive in most abdominal segments “Type I” endings, which are restricted in distribution and possess relatively prominent periodic terminal enlargements (“boutons”); whereas muscles 12 and 13 have in addition “Type II” terminals, which are more widely distributed and have smaller “boutons.” Serial sectioning of the Type I innervation of muscles 6 and 7 showed that two axons with distinctive endings contribute to it. One axon (termed Axon 1) has somewhat larger boutons, containing numerous synapses and presynaptic dense bodies (putative active zones for transmitter release). This axon also has more numerous intraterminal mitochondria, and a profuse subsynaptic reticulum around or under the synaptic boutons. The second axon (Axon 2) provides somewhat smaller boutons, with fewer synapses and dense bodies per bouton, fewer intraterminal mitochondria, and less-developed subsynaptic reticulum. Both axons contain clear synaptic vesicles, with occasional large dense vesicles. Approximately 800 synapses are provided by Axon 1 to muscles 6 and 7, and approximately 250 synapses are provided by Axon 2. In muscles 12 and 13, endings with predominantly clear synaptic vesicles, generally similar to the Type I endings of muscles 6 and 7, were found, along with another type of ending containing predominantly dense-cored vesicles, with small clusters of clear synaptic vesicles. This second type of ending was found most frequently in muscle 12, and probably corresponds to a subset of the “Type II” endings seen in the light microscope. Type I endings are thought to generate the ?fast’? and ?slow’? junctional potentials seen in electrophysiological recordings, whereas the physiological actions of Type II endings are presently not known. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Electron microscopy was used to study synapse development in the cardiac ganglia of human fetuses ranging from 8 to 27 weeks of ovulation time. Staining with ethanolic phosphotungstic acid was used for analysis of synaptic active zones. Specialization of interneuronal links begins with the appearance of electron dense material on plasmalemmas of nerve cells in the places of simple contacts. First synapses with single synaptic vesicles and short osmiophilic zones were found in cardiac ganglia in 8-week-old fetuses. Large granular vesicles and mitochondria vesicles are formed from cisternae of agranular endoplasmic reticulum in the preterminal parts of axons and moved by axoplasmic transport to the osmiophilic zones of future synapses. Axodendritic synapses appeared earlier in the cardiac ganglia than axosomatic ones, the latter were observed from the middle of gestation. Transient neuroglial synapse-like contacts were found in the cardiac ganglia. Staining with phosphotungstic acid made it possible to distinguish the degree of synapse maturation according to active synaptic zones. The peculiarities of synaptic development in cardiac ganglia in comparison with that in the central nervous system may be accounted for by different origins of the neural tube and of neural crest and by the level of their phylogenic development.  相似文献   

6.
Summary The hippocampal mossy fiber boutons of the rabbit were studied with phase and electron microscopy. The injection of 3-acetylpyridine, methoxypyridoxine, and reserpine diminishes the conspicuous osmiophilic density of the mossy fiber boutons in comparison to similar regions from nontreated animals as observable in phase microscopy. However, electron micrographs of the same samples show little or no diminution in the number of those synaptic vesicles consisting of a clear homogeneous center (Type I). Treatment with monoamine liberator, reserpine, results in the same cytomorphological appearance of the boutons as with convulsant agents. The number of synaptic dense-core vesicles (Type II) is not altered after treatment with the convulsant agents or reserpine.A certain extra-vesicular substance and a certain granular component of the vesicular membranes of Type I vesicles is progressively reduced after treatment with all of these drugs. It is suggested that this accounts for the decreased density by phase microscopy.The monoamine oxidase inhibitor, iproniazid, increases the density of the extra-vesicular substance as well as the particles attached to the vesicular membranes of Type I vesicles.It is suggested that these osmiophilic particles contain the biogenic monoamines (in this instance probably serotonin and/or histamine) and that in acute experiments the liberation of these neurotransmitters is not related to a disappearence of dense-core vesicles concommitant with a depletion of neurotransmitters but is from particles in the extra-vesicular substance and the granular component of the vesicular of the Type I vesicles.Furthermore, the functional role of zinc in the synaptic vesicles of mossy fiber boutons of the hippocampus is discussed in regard to a possible storage mechanism for biogenic monoamines.This study was partly supported by USPHS Grant 5 P10 ESOO159.  相似文献   

7.
Summary Innervation of the ascidian branchial basket and other structures is demonstrated by staining for cholinesterase. Cholinesterase activity is not restricted to synaptic sites but is present throughout the neurons. Primary and secondary axonal bundles form a bilaterally symmetric innervation pattern around the large dorsal visceral nerve. These bundles continue to split into progressively smaller bundles as they course throughout the basket. Axons are suspended in a fibrous matrix and run within the blood sinuses on the atrial side of the basket. Stigmatal ciliated cells of the branchial basket are innervated by highly branched distal portions of neurons, whose cell bodies are located in the ganglion. Synaptic boutons, containing electron-lucent vesicles, are found at nearly all stigmatal ciliated cells. NiCl2backfills of the visceral nerve reveal a distinct population of central neurons, some of which presumably control ciliary arrest.  相似文献   

8.
Summary The submicroscopic structure of the nerve cells in the planarian brain was studied. Close similarities with neurons of other invertebrates were noted. In the cytoplasm of the planarian nerve cells there are at least three types of vesicular inclusions: 1) Clear vesicles (200–800 Å in epon embedded tissue) similar in morphological appearance to classical synaptic vesicles. These have generally some content of extremely low density but occasionally a dense core. 2) Dense vesicles (400–1,200 Å in epon embedded tissue) containing highly osmiophilic granules. Between the limiting membrane of the vesicle and the granule there is always a clear rim of variable width. These vesicles closely resemble synaptic vesicles described in vertebrate adrenergic endings. 3) Neurosecretory vesicles (600–1,300 Å in Vestopal embedded tissue) similar to elementary granules observed in neurosecretory systems in vertebrates and invertebrates. All three vesicle types have the same mode of origin from the Golgi membranes. All are present in the nerve cell processes of the neuropil as well as in the perikarya. Any given perikaryon or axon contains only one of the three vesicle types. All of these vesicles are considered to be discharged into the axons from their site of origin within the perikaryon.  相似文献   

9.
Nerve fibers connecting the brain with the pineal gland of the Mongolian gerbil (central pinealopetal fibers) were investigated by means of light and electron microscopy. Several myelinated fibers penetrate from the brain into the deep pineal gland, extend further into the pineal stalk and continue to the superficial portion of the pineal gland. In the centripetal direction these fibers were traced to the stria medullaris and to the habenular nuclei, where they turned laterad and then occupied a position immediately ventral to the optic tract. As shown in electron micrographs, lesions of the habenular area led to degeneration of myelinated fibers and nerve boutons in the deep pineal gland, the pineal stalk and the superficial pineal gland. Only boutons containing clear transmitter vesicles (devoid of a dense core) were observed to degenerate after the habenular lesions. On the other hand, removal of the superior cervical ganglia resulted in degeneration of boutons containing small (40 to 60 nm in diameter) dense-core vesicles. Several of the nerve fibers that penetrate into the deep pineal directly from the brain (central fibers) exhibited a positive reaction for acetylcholinesterase (AChE). AChE-positive perikarya were located in the projections of the stria medullaris, the lateral portions of the deep pineal, the area of the posterior commissure, and the periventricular gray of the mesencephalon. Such perikarya were found neither in the pineal stalk nor in the superficial pineal gland. These results present anatomical evidence that the pineal organ of the Mongolian gerbil receives multiple nervous inputs mediated by peripheral autonomic (i.e., sympathetic) nerve fibers, on the one hand, and by central fibers, on the other.  相似文献   

10.
Light and electron microscopy of the pacemaker ganglion of the scorpion heart indicate that it is about 15 mm long and 50 μm in diameter and extends along the dorsal midline of the heart. The largest cell bodies (30–45 μm in diameter) occur in clusters along the length of the ganglion. The ganglion appears to be innervated with fibers from the subesophageal and first three abdominal ganglia. The cardiac ganglion is surrounded by a neurilemma and a membranous sheath. The latter is apparently derived from connective tissue cells seen outside the ganglion. Nerve fibers other than those in the neuropil areas are usually surrounded by membrane and cytoplasm of glial cells. Often there are several layers of glial membrane, forming a loose myelin. The cardiac nerves to the heart muscle are also surrounded by a neurilemma, and the axons are surrounded by glia. The motor nerves contain lucent vesicles 60–100 nm and opaque granules 120–180 nm in diameter. In the cardiac ganglion, some nerve cell bodies have complex invaginations of glial processes forming a peripheral trophospongium. In the neuropil areas, nerve cell processes are often in close apposition. The septilaminar configuration typical of gap junctions is common, with gap distances of 1–4 nm. In tissues stained with lanthanum phosphate during fixation, we found gaps with unstained connections (1–2 nm diameter) between nerve-nerve and glial-nerve cell processes. Annular or double-membrane vesicles in various stages of formation were also seen in some nerve fibers in ganglia stained with lanthanum phosphate. Nerve endings with electron-lucent vesicles 40–60 nm in diameter are abundant in the cardiac ganglion, suggesting that these contain the excitatory transmitter of intrinsic neurons of the ganglion. Less abundant are fibers with membrane-limited opaque granules, circular or oblong in shape and as much as 330 nm in their longest dimension. Also seen were some nerve endings with both vesicles and granules.  相似文献   

11.
Summary The opioid peptide dynorphin A (1–17) is the third transmitter identified in the striatonigral projection, the other two being gamma-aminobutyric acid (GABA) and substance P. The ultrastructural features of the dynorphinergic terminals in substantia nigra/pars reticulata were studied using pre-embedding immunocytochemistry with the classical peroxidase-antiperoxidase-diaminobenzidine-method; these features were compared with GABAergic boutons visualized with an immunogold method. Two distinct types of dynorphin-A-immunoreactive boutons could be identified: (1) type A (81%) possessing characteristics similar to the GA-BAergic nerve endings in this region, i.e., large pleomorphic vesicles and symmetric synaptic contacts, (2) type B (19%) displaying asymmetric synaptic zones and small, mostly round vesicles. These results are in agreement with physiological studies suggesting a dual action of dynorphin A in substantia nigra.  相似文献   

12.
The interneuronal connections in ganglia of the caudal part of the hen intestinal nerve of Remak are presented as axodendritic and axosomatic synapses and symmetric axo-axonal, dendro-dendritic and axodendritic contacts, often forming complicated complexes. Under conditions of preliminary decentralization or under certain disturbances of nervous connections with the intestine, a part of synapses remains, and a part of them degenerates, this demonstrates participation of peripheral afferent neurons in formation of the synaptic apparatus of the ganglia mentioned. The axonal terminals differentiate by composition of the synaptic vesicles: some contain mainly light agranular vesicles, others--a large amount of granular ones. The characteristic peculiarities of the hen intestinal nerve ganglia, in contrast to analogous mammalian ganglia, are abundant axosomatic synapses in some neurons, and presynaptic terminals, containing a large number of granular vesicles.  相似文献   

13.
Summary The human posterior pituitary obtained at operation was studied with the electron microscope.The fine structure of the human neurohypophysis was found to be basically similar to that of the other mammalian and cold-blooded vertebrates examined.In addition to the nerve fibres and their swellings two cell types were seen: the pituicytes and the cells in the perivascular spaces — the fibroblasts.The distribution, size and shape of the pituicytes was variable. Long pituicyte processes were seen (sometimes > 20 in length) running between nerve fibres and their swellings, and ending on or in the perivascular space.Several types of large nerve swellings were seen: a) those containing only elementary granules, mitochondria and small vesicles; b) modified swellings characterised by contorted mitochondria and mitochondrial fragments. The latter were often surrounded by single or multiple highly osmiophilic myelin-like membranes; c) multilamellar bodies characterised by concentric osmiophilic myelin-like membranes or lamellae apparently dividing the swellings into separate compartments. The small vesicles, appearing in considerable numbers in such swellings, are suggested to originate from the osmiophilic lamellae.While some true synaptic vesicles may occur in non-secretory nerve fibres, the small vesicles (250–600 Å) seen in most nerve fibre swellings were thought to be derived from elementary granules.Repeated swellings were seen in individual nerve fibres and their functional significance discussed.The electron-dense material within the elementary granules was variable and is suggested to be dependent on the functional state of the neurohypophysis rather than on hormone content. Internal structure was often seen in the elementary granules. The impression is gained that the osmiophilic content of the elementary granules was composed of microvesicles possibly representing molecular aggregations of the hormone-neurophysin complex.  相似文献   

14.
Summary The neuropeptide- and catecholamine-synthesizing enzyme content and ultrastructure of the peri-ureteric ganglia of guinea-pigs were investigated. Small numbers of neuronal perikarya were present at frequent intervals forming ganglia close to, and along the entire length of, the ureter. Each of these ganglia was surrounded by a connective tissue capsule, and was located in the peri-ureteric connective tissues. Within each ganglion were typical nerve terminals and varicosities containing small, clear synaptic vesicles or synaptic vesicles with an electron-dense core, or a mixture of the two. In the ganglia, immunoreactivity to tyrosine hydroxylase, dopamine hydroxylase, neuropeptide tyrosine, or vasoactive intestinal peptide was present in neuronal perikarya; immunoreactivity to substance P or leucine enkephalin was present in nerve terminals and varicosities. Electron-microscopic immunogold studies indicated that there was no coexistence of substance P and enkephalin in the nerve terminals, unlike related ganglia in the pelvis of guinea-pigs.  相似文献   

15.
Fine structure of nerve cells in a planarian   总被引:2,自引:0,他引:2  
The fine structure of the nerve cell types in the white planarian Procotyla fluviatilis were described. Ganglion cells comprise the major portion of the brain. These cells are irregular in shape with several cytoplasmic processes and contain ribosomes, a sparse endoplasmic reticulum, microtubules, lysosomes, and a Golgi apparatus with numerous small vesicles. Granule-containing cells are situated in the peripheral regions of the brain and along the nerve cords. These cells contain ribosomes, rough-surfaced endoplasmic reticulum and a Golgi apparatus with associated dense granules. The granules occupy most of the cytoplasm and are ~ 750A in diameter with moderately dense contents, ~ 750A with opaque contents, and ~ 1000A with contents of medium density. These granules are similar to those in the nervous systems of higher animals that contain epinephrine, norepinephrine, and neurosecretory substance, respectively. Each cell contains predominantly one type of granule although there is some intermixing of granules and intermediate types between the three most abundant granules. Small clear vesicles, resembling cholinergic synaptic vesicles, and all types of dense granules occur in the neuropil and within nerve endings.  相似文献   

16.
Acetylcholinesterase (AChE) activity at the synapses of presynaptic boutons on presumed alpha-motoneurons in the chicken ventral horn was studied histochemically at the light- and electron-microscope levels. At the light-microscope level, many dot-like AChE-active sites were observed on the soma and dendrites of presumed alpha-motoneurons. On electron microscopy, reaction products for AChE activity were observed mainly in the synaptic clefts of the four kinds of presynaptic boutons: (1) S type boutons, (2) boutons containing small, spherical, dense cored vesicles (diameter range, 60-105 nm) and spherical, clear vesicles, (3) boutons containing medium-sized, spherical, dense cored vesicles (65-115 nm) and spherical, clear vesicles, and (4) boutons containing large, spherical, dense cored vesicles (80-130 nm) and spherical, clear vesicles. In the light of previous physiological and biochemical studies, the present results suggest the possibility that each of these presynaptic boutons which are AChE-active in their synaptic clefts may contain acetylcholine, substance P, or enkephalins which acts as a neurotransmitter or modulator.  相似文献   

17.
Summary The reaction of nerve endings in the median eminence of the rat to zinc iodide-osmium tetroxide (ZIO) staining was examined electron microscopically under normal and experimental conditions. The experimental condition of catecholamine exhaustion in the nerve endings was induced by the administration of H44/68 and reserpine. Vesicles in the terminals of catecholaminergic nerves reacted similarly to ZIO staining in both normal and experimental material. The majority of synaptic vesicles in various terminals gave a positive ZIO reaction. The neurosecretory elementary granules, however, failed to react with ZIO. On the other hand, some nerve terminals in the external layer of the median eminence showed a strong positive reaction in the cytoplasmic matrix, in mitochondria as well as in synaptic vesicles. These findings strongly suggest that the ZIO-positive substance in nerve terminals is not the transmitter itself, i.e. the monoamine, but rather represents a range of substances commonly found in various kinds of synaptic vesicles and is probably proteinaceous in nature. A brief discussion is also given on the difference in ZIO reactivity between neurosecretory elementary granules and small vesicles in the hypothalamo-hypophyseal tract.This work was supported in part by a research grant from the Ministry of Education, Japan  相似文献   

18.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

19.
Peptidergic synaptic transmission in sympathetic ganglia   总被引:2,自引:0,他引:2  
Biologically active peptides have been localized in neuronal cell bodies, axons, and synaptic boutons of sympathetic ganglia; some of these peptides may be neurotransmitters. For example, substances immunologically similar to substance P and luteinizing hormone-releasing hormone appear to be released from nerve terminals in sympathetic ganglia. In each case, the postsynaptic action of the peptide lasts for several minutes and is accompanied by a combination of decreases and increases in the membrane conductance that are voltage dependent. These peripheral peptidergic synapses may be models for peptidergic transmission in the central nervous system where detailed analysis is more difficult.  相似文献   

20.
Summary By means of a preembedding immuno-electronmicroscopic technique, a large number of nerve endings containing a substance related to human growth hormonereleasing factor (hGRF) have been demonstrated in the paraventricular nucleus of the guinea pig. They made synaptic contacts primarily with dendritic shafts: 80% of these contacts were symmetrical. The immunoprecipitate was located mainly in large granules and around small clear vesicles. These findings suggest that a peptide related to hGRF may play a role in neural communication in the paraventricular nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号