首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Electron microscopy of the median eminence (ME) of the Mongolan gerbil (Meriones unguiculatus) revealed that, unlike most other mammalian species, abundant neurohaemal contacts were present not only in the external zone (EZ), but also in the internal zone (IZ) up to the subependymal layer. In the IZ, nerve terminals with dense core vesicles and/or small clear vesicles abutted on the outer basal lamina of the perivascular space of portal capillaries, alternating with tanycyte processes. In addition to these neurohaemal contacts, several layers of vesicle-filled varicosities surrounded the portal vasculature. An analysis of serial thin sections showed that the latter varicosities could also reach the perivascular basal lamina or contact it through small extensions in other planes of section. Apparently at least some of the nerve terminals making neurohaemal contacts were en passant in nature. A correlative investigation of synaptophysin (a major integral membrane protein of small synaptic vesicles) immunoreactivity at the light microscopical level demonstrated a conspicuously dense immunostaining around portal capillaries in both EZ and IZ of the proximal and distal ME (neural stalk). Since this perivascular accumulation of immunoreactivity coincides precisely with the ultrastructural accumulation of vesicle-filled axons which establish numerous neurohaemal contacts, it is concluded that this pattern of synaptophysin immunostaining indicates sites of neurohaemal contacts at the light microscopical level. During postnatal development, the perivascular concentration of synaptophysin immunoreactivity in the IZ appeared concomitantly with the early postnatal expansion of long portal capillary loops into the IZ. By direct electron-microscopical demonstration and indirect immunohistochemical evidence, the present study of the gerbil ME reveals that the whole extent of portal capillaries up to the subependymal layer constitutes an area for numerous neurohaemal contacts. Hence, the common view that neurohaemal contacts are restricted to the EZ of the mammalian ME is not generally valid.  相似文献   

2.
Shioda  S.  Nakai  Y. 《Cell and tissue research》1983,228(3):475-487
Immunocytochemical and autoradiographic localization of thyrotropin-releasing hormone (TRH)- and 3H-TRH-binding sites was studied in the arcuate nucleus-median eminence region of the rat. TRH-like immunoreactivity was found in dense granular vesicles (90-140 nm in diameter) in TRH-like immunoreactive nerve fibers and terminals. In the median eminence, the immunoreactive terminals were observed to be in direct contact with the perivascular basal lamina of the portal vessel and to form synaptoid contacts with tanycytes. In the arcuate nucleus, the immunoreactive terminals were often found to form axosomatic and axo-axonic, and/or axo-dendritic synapses. The uptake of tritiated TRH into the nerve fibers and terminals of the median eminence was also observed by autoradiography and the distribution and localization of silver grains in them were analyzed quantitatively by circle analysis. Thirty minutes after intraventricular infusion of 3H-TRH, radioactive labeling occurred in type-2 and 3-nerve fibers and terminals containing dense granular vesicles in the median eminence. It is therefore suggested that the neurons labeled after 3H-TRH infusion possess certain functions as physiological recognition sites or receptors for TRH.  相似文献   

3.
Neurotensin immunoreactivity was identified in cell bodies, dendrites, spines, axons, terminals and varicosities in superficial laminae of rat spinal cord with the electron microscope. Unlabeled terminals synapsed with neurotensin-immunoreactive cell bodies, dendrites and spines. Presynaptic terminals contained round or pleomorphic vesicles and generally made symmetrical contacts with medium-sized neurotensin-containing dendrites in outer lamina II, and asymmetrical or symmetrical contacts with large and small dendrites and spines in inner lamina II. Neurotensin immunoreactive axons were unmyelinated, and their terminals were presynaptic to unlabeled dendrites and spines in laminae I and II. Terminals contained small, round, clear vesciles (31 nm) and occasional large granular vesicles (78 nm). Contacts in outer lamina II were evenly distributed among dendrites of various sizes and spines, whereas the majority of labeled terminals in inner lamina II made contacts onto small dendrites and spines. These findings indicate that neurotensin effects in rat spinal cord are mediated by axodendritic synapses, and that neurotensin cells at the inner and outer borders of lamina II contact dendrites of efferent neurons or other interneurons in the dorsal horn.  相似文献   

4.
Summary The median eminence (ME) of hypophysectomized rats was studied by means of light and electron microscopy. Paraldehyde-fuchsin (PAF)-positive material is seen in the external zone (EZ) of the ME 2–5 days after the operation. Its amount gradually increases especially in the caudal part of the ME during the following few days. Some PAF-positive fibers make contact with the subependymally located blood capillaries. In the most caudal region of the recessus infundibuli they penetrate into the third ventricle. PAF-positive material decreases markedly from the ME of rats two months after hypophysectomy and exposure to a 1% salt load. Fibers of types A1, A2 and B containing granules of 120–220 nm, 100–150 nm and 80–100 nm in diameter, respectively, are seen in the EZ of the ME in hypophysectomized rats, although almost exclusively A2- and B-type structures make contact with the primary portal capillaries in intact animals. All types of neurosecretory fibers establish contact with the subependymal nonfenestrated blood capillaries and penetrate the recessus infundibuli. Some neurosecretory terminals of different types make direct contact with the glandular cells of the pars tuberalis or are separated from them by a thin basal lamina. It is assumed that mainly neurosecretory fibers of types A2 and B are permanently connected with the primary portal capillaries in the EZ of the ME in intact mammals, while the overwhelming majority of fibers of A1-type shows ingrowth during the course of postoperative reparation. The possible physiological significance of the described changes is discussed.  相似文献   

5.
Summary The median eminence (ME) of the adult frog, Rana temporaria, was studied by means of electron microscopy including quantitative electron-microscopic autoradiography. In frogs captured in May and June numerous peptidergic neurosecretory fibres extending via the internal zone to the pars nervosa display large swellings containing few granules, mitochondria, neurotubules and cisternae of the smooth endoplasmic reticulum. In addition, few secretory globules up to 1.5 m in diameter occur in these varicosities. In animals collected during the autumn period many of these neurosecretory swellings filled with neurosecretory granules and polymorphic inclusions resemble Herring bodies. Three types of granule-containing neurosecretory fibres were observed in the external zone (EZ) of the ME of adult R. temporaria. Peptidergic A1- and A2-type fibres are characterized by granules 150–220 nm and 100–160 nm in diameter, respectively. Monoaminergic fibres of type B with granules approximately 100 nm in diameter represent 50% of all neurosecretory elements in the EZ of the frog ME; 12% of the total number of granule-bearing axons in the EZ actively taking up radiolabelled 5-hydroxytryptophan are thought to be serotoninergic terminals. Neurosecretory terminals of all types and glial vascular endfeet establish direct contacts with the perivascular space of the primary portal capillaries. Some neurosecretory terminals are separated from the lumen of the third ventricle by a thin cytoplasmic lamella of tanycytes. The possible physiological significance of this structural pattern is discussed.  相似文献   

6.
A polyclonal antibody against allatostatin 1 (AST-1) of cockroach Diploptera punctata was used to investigate the distribution of AST-like immunoreactivity within the abdomen of the locust, Schistocerca gregaria. In the abdominal ganglia, AST-like immunoreactivity was found in both cell bodies and neuropile. In ganglia 6 and 7, staining was found in serial homologous cell bodies in anterior dorsolateral and dorsomedial, and posterior ventrolateral and ventromedial locations. In the terminal ganglion, the numerous immunoreactive somata were smaller in size than those in the unfused ganglia. The combination of backfill experiments with immunocytochemistry showed that, in abdominal ganglion 7, one neuron of the ventromedian cell body cluster and two of the ventrolateral cluster innervated the oviduct, which itself was covered with a dense mesh of AST-immunoreactive varicosities. Combining electron microscopy with immunohistochemistry revealed AST-like immunoreactivity in dense-core vesicles located in neurohaemal-like terminals lacking structures normally found in synapses. A mesh of AST-immunoreactive varicosities was also found on the muscles of the spermatheca and the spermathecal duct. In addition, a mesh of strongly stained varicosities was present in the distal perisympathetic organs (neurohaemal organs in the abdomen) and on the lateral heart nerves (a putative neurohaemal release zone). These data indicate that AST is an important neuroactive substance that is probably involved in multiple tasks in the control of the locust abdomen.  相似文献   

7.
Summary The fine structure of adrenergic axon terminals was examined in the paraventricular nucleus of the thalamus (PNT) and in the hypothalamic arcuate nucleus-median eminence (ARC-ME) complex by use of phenylethanolamine-N-methyl transferase (PNMT) immunocytochemistry. In the PNT, immunoreactive terminals formed a dense and well-circumscribed plexus. In the ARC, labeled varicosities were less numerous and more evenly distributed. In the ME, they were scarce and confined to the inner zone. In all these areas, the diameter of immunoreactive varicosities ranged between 0.2 and 1.3 m; in the ME and in the transitional zone between the ARC and the ME, a population of larger boutons (>2 m) was also visible. All immunoreactive varicosities exhibited densely packed small, clear vesicles associated with a few large granular vesicles. In the PNT and the ARC, but not in the ME, they formed synaptic contacts with dendritic elements and were occasionally apposed to neuronal cell bodies. These axo-somatic appositions showed no junctional specializations. In the ME and transitional zone, immunoreactive terminals were frequently juxtaposed to, and occasionally established differentiated synaptic contacts with, tanycytes. These data support a transmitter role for adrenaline in the diencephalon and suggest that adrenaline plays a role in hypothalamo-hypophysiotropic regulation through interactions with neural and glial elements.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which primarily affects motor neurons. Eight cases of ALS and seven control cases were studied with semiquantitative immunocytochemistry for chromogranin A, chromogranin B and secretogranin II that are soluble constituents of large dense core vesicles, synaptophysin as a membrane protein of small synaptic vesicles and superoxide dismutase 1. Among the chromogranin peptides, the number and staining intensity of motor neurons was highest for chromogranin A. In ALS, the staining intensity for chromogranin peptides and synaptophysin was significantly lower in the ventral horn of ALS patients due to a loss in immunoreactive motor neurons, varicose fibers and varicosities. For all chromogranins, the remaining motor neurons displayed a characteristic staining pattern consisting of an intracellular accumulation of immunoreactivity with a high staining intensity. Confocal microscopy of motor neurons revealed that superoxide dismutase 1-immunopositive intracellular aggregates also contained chromogranin A, chromogranin B and secretogranin II. These findings indicate that there is a loss of small and large dense core vesicles in presynaptic terminals. The intracellular co-occurrence of superoxide dismutase 1 and chromogranins may suggest a functional interaction between these proteins. This study should prompt further experiments to elucidate the role of chromogranins in ALS patients.  相似文献   

9.
The character of interrelations of nervous structures and the lymphatic capillary walls has been studied in cats. Under the light microscope twisted nervous fiber terminals of the intestinal neuron dendrites have been revealed around the lymphatic capillaries. Electron microscopical investigation has not revealed any specialized contacts of the nervous terminals and the lymphatic capillary walls. The receptors and terminals of axons do not situate nearer than 10 nm from the latter. According to the structure of synaptic vesicles among the axonal terminals next to the lymphatic capillary walls cholinergic, adrenergic and purinergic ones are described. The influence of the nervous system to the function of the small intestine lymphatic capillaries is mediated via the precapillary space. The neuromediators from the axonal terminals get into it owing to absence of neurolemmocytic membranes around them.  相似文献   

10.
Summary The neurointermediate lobe of the hypophysis in the Chameleon (Chamaeleo dilepis) was examined with light and electron microscopic methods, with special reference to the cytology of the pars intermedia (PI). The PI is the largest lobe of the hypophysis consisting of (1) dark cells with secretory granules ranging from 200–600 nm; (2) light cells, far fewer in number, containing granules 150–300 nm in diameter; (3) stellate, non-secretory cells. The secretory cells abut onto the perivascular basal lamina of the capillary sinusoids while their apical part borders an intercellular space. This surface of the cells often bears a cilium. The granules arise from the Golgi cisternae while small detached vesicles are found between circumscribed sites of the cell membrane and the Golgi apparatus. No nervous elements were found in the pars intermedia and it is assumed that the regulation of this lobe is purely humoral. This is supported by the presence of three types of nerve terminals in the pars nervosa: (a) terminals with large secretory granules and small vesicles; (b) terminals with dense-core vesicles and small vesicles; (c) terminals with small vesicles only. All of these are secretory as indicated by the presence of the synaptic semidesmosomes formed with the perivascular basal lamina.I would like to thank Mr. W.N. Newton for his skill and aid in all aspects of this work, Mr. A. Ansary for expert photographic assistance and the Central Pathology Laboratory, University of Dar es Salaam, for the electron microscopic facilities provided. Research sponsored by the University of Zambia Grants J02-18-00 and Medic 74/6  相似文献   

11.
The distribution of synaptophysin, an integral polypeptide of presynaptic vesicle membranes, was investigated in guinea pig heart by immunohistochemistry using monoclonal antibodies. Synaptophysin immunoreactivity was found in varicose nerve terminals in all regions of the heart. Dense networks of immunoreactive varicosities were found to surround the vasculature and to be located within the subendocardial layers of the atria and ventricles, the highest levels being seen in the innervation of the conductive system. As synaptophysin is probably a component of the presynaptic vesicles of all synapses, its use as a marker of all nerve terminals within the heart is proposed.  相似文献   

12.
Summary The innervation and myocardial cells of the human atrial appendage were investigated by means of immunocytochemical and ultrastructural techniques using both tissue sections and whole mount preparations. A dense innervation of the myocardium, blood vessels and endocardium was revealed with antisera to general neuronal (protein gene product 9.5 and synaptophysin) and Schwann cell markers (S-100). The majority of nerve fibres possessed neuropeptide Y immunoreactivity and were found associated with myocardial cells, around small arteries and arterioles at the adventitial-medial border and forming a plexus in the endocardium. Subpopulations of nerve fibres displayed immunoreactivity for vasoactive intestinal polypeptide, somatostatin, substance P and calcitonin gene-related peptide. In whole-mount preparations of endocardium, substance P and calcitonin gene-related peptide immunoreactivities were found to coexist in the same varicose nerve terminals. Ultrastructural studies revealed the presence of numerous varicose terminals associated with myocardial, vascular smooth muscle and endothelial cells. Neuropeptide Y immunoreactivity was localised to large electron-dense secretory vesicles in nerve terminals which also contained numerous small vesicles. Atrial natriuretic peptide immunoreactivity occurred exclusively in myocardial cells where it was localised to large secretory vesicles. The human atrial appendage comprises a neuroendocrine complex of peptidecontaining nerves and myocardial cells producing ANP.  相似文献   

13.
Summary The development of immunoreactive (ir) somatostatin-containing nerve terminals in the rat median eminence (ME) has been examined electron-microscopically. Nerve fibers containing ir particles scattered throughout the axoplasm are first seen in the external layer of the ME on day 18.5 of gestation, and, on day 21.5 appear to terminate on the basement membrane of the perivascular space of the portal vessels. After birth, the fiber terminals contain several membrane-limited granules, which are labeled with ir PAP particles. Ultrathin, Epon-embedded sections of ME, treated by the protein A gold-labeling method for somatostatin, demonstrate positively labeled granules in the nerve fibers in the postnatal ME, but in the prenatal tissue, no specific gold-labeling is found. These findings show that, in the external layer of the ME, somatostatin storing occurs in the granules in the axonal terminals after birth.  相似文献   

14.
The ultrastructure of substance P (SP)-containing axon terminals in the mucosa of the human urinary bladder was studied. Numerous SP-immunoreactive varicose nerve fibers were seen in the lamina propria, and most of them ran freely in the connective tissue. Many SP-immunoreactive nerve fibers were observed beneath the epithelium, and perivascular SP-immunoreactive nerves were also found in the submucosal layer. We observed a total of 305 SP-immunoreactive (IR) axon terminals, of which most (89.6%) were free nerve endings at the ultrastructural level; the rest of the SR-IR axon terminale were seen in the vicinity of the epithelium and blood vessels in the lamina propria. Varicose regions of SP-IR axon terminals contained large granular and small agranular synaptic vesicles, and most of them partially lacked a Schwann cell sheath. In some SP-IR varicosities, synaptic vesicles were concentrated in the region without any Schwann cell sheath. Long storage (for more than 1 month) of fixed-tissue pieces in sucrose before freezing has improved the ultrastructure of cryostat sections in pre-embedding immunohistochemistry. Trypsin digestion for the purpose of exposing antigenic sites was also employed before applying the first antiserum.  相似文献   

15.
Summary The distribution of synaptophysin, an integral polypeptide of presynaptic vesicle membranes, was investigated in guinea pig heart by immunohistochemistry using monoclonal antibodies. Synaptophysin immunoreactivity was found in varicose nerve terminals in all regions of the heart. Dense networks of immunoreactive varicosities were found to surround the vasculature and to be located within the subendocardial layers of the atria and ventricles, the highest levels being seen in the innervation of the conductive system. As synaptophysin is probably a component of the presynaptic vesicles of all synapses, its use as a marker of all nerve terminals within the heart is proposed.Supported by the Deutsche Forschungsgemeinschaft (SFB 90) requests should be sent  相似文献   

16.
The structure of the mammalian area postrema   总被引:4,自引:0,他引:4  
  相似文献   

17.
A light microscopical study was conducted to ascertain the type of cells in the nucleus pulposus of the adult human intervertrebral disc. Three lumbar intervertebral discs were removed from each of 15 male and female adults at autopsy (ages ranged from 19 to 62 years). The tissue was fixed in formalin, decalcified in formic acid, dehydrated in a graded series of ethanol, embedded in paraffin, and serially sectioned at 7-10 micron. Tissue sections were affixed to albuminized glass slides and stained either by hematoxylin and eosin or hematoxylin and Van Gieson's stain. The cells of the bulk of the nucleus pulposus consisted of chondrocytes and a few fibroblasts; however, the subchondral matrix of the nucleus pulposos contained numerous stellate cells with (from 1 to 8) unusually long (up to 80 micron) primary cytoplasmic processes that often branch into secondary processes. The cell processes contained cytoplasmic varicosities at various intervals along their lengths; and their endings often expanded into bulbous, vesicle-filled process terminals. The surrounding extracellular matrix usually contained numerous, vesicle-filled, eosinophil matrix bodies. Morphological similarities of cytoplasmic varicosities, process terminals, and matrix bodies, as well as the apparent budding of process terminals, suggest that these previously unidentified cells are secreting an unknown matrix component into the subchondral matrix of the nucleus pulposus of the adult human.  相似文献   

18.
An ultrastructural investigation showed that there was a neurohaemal organ in the wall of the ampulla of the antennal pulsatile organ. The neurosecretory axon terminals occurred singly or in small groups rather than closely packed together as in other neurohaemal organs. All axons contained the same type of neurosecretory granule. The granules had varying electron density and a diameter in the range 1000–2500 Å. Some terminals contained small, elliptical, electron-transparent vesicles and the axolemma was apposed to the stroma. Other terminals were large and enveloped by glial tissue and the contents of the terminals exhibited varying degrees of autolytic degeneration. Autolysis was characterized by the occurrence of dense bodies and multilaminate bodies which enclosed mitochondria and neurosecretory granules. It was suggested that the neurosecretory material affects antennal function.  相似文献   

19.
Localization of acetylcholinesterase (AChE) was investigated in the chicken Harderian gland at the electron microscopic level. Nerve cells in the pterygopalatine ganglion showed AChE activity. They had a pale and large nucleus which was round or oval in shape. Reaction product of AChE was detected between the nuclear envelopes; in the cisterna of rough endoplasmic reticulum and the lumen of the Golgi lamellae, and on the plasma membrane of the nerve cell. In the interstitium of the gland, nerve fibers showing AChE activity were easily found. They were often seen in the perivascular space and between plasma cells. These nerve fibers had varicosities in contact with plasma cells and the endothelium or the smooth muscle fiber of the blood vessels. AChE-positive varicosities or terminals contained many small clear vesicles (about 50nm in diameter) and a few large dense-cored vesicles (about 100 nm in diameter). No contacts of nerve fibers with acinar cells or the ductal epithelium were observed in the present study. Our data indicate that cholinergic nerves play distinct roles in the regulation of the immune function of the chicken Harderian gland.  相似文献   

20.
The bovine splenic nerve trunk contains mast cells, ganglion cells, small intensely fluorescent (SIF) cells, and varicosities which exhibit a brilliant fluorescence characteristic for noradrenaline (NA) and dopamine (DA) after formaldehyde exposure. All these catecholamine-rich structures could contribute particles to isolated nerve vesicle fractions. Mast cells are recognized ultrastructurally by their large (300-800 nm) dense granules. SIF cells may be represented by cells and processes containing dense cored vesicles (120-140 nm) which are larger than the typical vesicles in axons and terminals. Terminal-like areas with typical large dense cored vesicles (LDV, 75 nm) and small dense cored vesicles (SDV, 45-55 nm) probably correspond to the fluorescent varicosities. The LDV constitute about 40% of all vesicles in terminal-like areas and terminals. Their staining properties indicate the presence of protein, phospholipids, and ATP. Tyramine depletes NA without loss of matrix density. The LDV can fuse with the terminal membrane, and released material outside omega profiles is interpreted to depict exocytosis. Large and small vesicles are easily distinguished from the very large mast cell granules and the moderately dense Schwann cell vesicles. Neither appear to contaminate the LDV fractions but the latter may contain a small population of SIF cell vesicles. Golgi vesicles from the Schwann cells mainly occur in the lighter zones of the gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号