首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genetic characterization of experimental tumors is essential in order to evaluate their relevance as appropriate animal models for human neoplasms. We have used flow cytometry and a recently established Comparative Genomic in situ Hybridization (CGH) protocol for the rat (Kappler et al., 1998) to investigate chromosome copy number changes in five ethylnitrosourea induced gliomas of the rat. Flow cytometry showed aneuploid DNA indices in three of the tumors investigated. CGH analysis of primary tumors revealed whole chromosome and subchromosomal gains of rat chromosomes (RNO) 1, 2, 4, 6, 7, 10, 11, 12, and 13. Loss of RNO 5q23-->q35 was apparent in one tumor. High level copy number gains were not observed using CGH as well as semiquantitative PCR with Tgfa, Met and Hbb primers. Low copy number gain of RNO 4 represents the most common aberration, since it was detected in four of five tumors investigated. Three tumors showed gain of RNO 7, while two tumors showed gains of RNO 10q31-->qter and RNO 12q. Deletion of RNO 5q23-->q35 and gain of RNO 4 occurred mutually exclusively. Therefore, we conclude that these two alterations may represent different pathways in the pathogenesis of experimental gliomas in the rat. Findings are discussed in analogy to human gliomas.  相似文献   

2.
Comparative genomic hybridization (CGH) has been applied to characterize 61 primary renal cell carcinomas derived histogenetically from the proximal tubulus. The tumor samples comprised 46 clear-cell renal cell carcinomas (ccRCCs) and 15 papillary renal cell carcinomas (pRCCs). Changes in the copy number of entire chromosomes or subregions were detected in 56 tumors (92%). In ccRCCs, losses of chromosome 3 or 3p (63%); 14q (30%); 9 (26%); 1 and 6 or 6q (17% each); 4 and 8 or 8p (15% each); 22 (11%); 2 or 2q and 19 (9% each); 7q, 10, 16, 17p, 18, and Y (7% each); and 5, 11, 13, 15, and 21 (4% each) were detected. Most frequent genomic gains in ccRCC were found on chromosome 5 (63%); 7 (35%); 1 or 1q (33%); 2q (24%); 8 or 8q, 12, and 20 (20% each); 3q (17%); 16 (15%); 19 (13%); 6 and 17 or 17q (11% each); and 4, 10, 11, 21, and Y (9% each). In pRCCs, gains in the copy number of chromosomes 7 and 17 (7/15, each) and 16 and 20 (6/15, each) were frequent. One pRCC showed amplification of subchromosome regions 2q22-->q33, 16q, 17q and the entire X chromosome. In pRCC, losses were less frequently seen than gains. Losses of chromosomes 1, 14, 15, and Y (3/15 each) and 2, 4, 6, and 13 (2/15 each) were observed. In ccRCCs, statistical evaluation revealed significant correlations of chromosomal imbalances with tumor stage and grade, i.e., a gain in copy number of chromosome 5 correlated positively with low tumor grade, whereas a gain of chromosomes 10 and 17 correlated positively with high tumor grade. Furthermore, loss of chromosome 4 correlated positively with high tumor stage.  相似文献   

3.
The cell lines SW480 and SW620, derived from different stages of colon carcinoma in the same patient, have been used for a number of biochemical, immunological, and genetic studies on colon cancer. A comparative analysis of their karyotypes may identify chromosomal aberrations that might represent markers for metastatic spread. In the present study spectral karyotyping (SKY) was applied to these two colon cancer cell lines. Compared to previously reported G-banded karyotypes, 9 (SW480) and 7 (SW620) markers were identical, 3 (SW480) and 3 (SW620) markers could be redefined, 5 (SW480) and 8 (SW620) markers were newly identified, and 4 (SW480) and 5 (SW620) of the previous described markers could not be confirmed. The redefined aberrations include very complex rearrangements, such as a der(16) t(3;16;1;16;8;16; 1;16;10) and a der(18)t(18;15;17)(q12; p11p13;??) in SW620 and a der(19)t(19;8;19;5) in SW480, that have not been identified by conventional banding techniques. The resulting chromosome gains (5q11-->5q15, 7pter-->q22, 11, 13q14-->qter, 20pter-->p12, X) and losses (8pter-->p2, 18q12-->qter, Y) found in both SW480 and SW620 were in good agreement with those frequently described in colorectal tumors as primary changes in the stem cell. Abnormalities found exclusively in SW620 cells only (gains of 5pter-->5q11, 12q12-->q23, 15p13-->p11, and 16q21-->q24 and losses of 2pter-->2p24, 4q28-->qter, and 6q25-->qter) can be viewed as changes that occurred in a putative metastatic founder cell.  相似文献   

4.
Multiple chromosomal imbalances have been identified in breast cancer using comparative genomic hybridization (CGH). Their association with the primary tumors' potential for building distant metastases is unknown. In this study we have investigated 39 invasive breast carcinomas with a mean follow-up period of 99 months (max. 193 months) by CGH to determine the prognostic value of chromosomal gains and losses.The mean number of chromosomal imbalances per tumor was 6.5+/-0.7 (range 2 to 18). The most frequent alterations identified in more than 1/3 of cases were gains on chromosomes 11q13, 12q24, 16, 17, and 20q, and losses on 2q and 13q. A significantly different frequency of chromosomal aberrations (p相似文献   

5.
The aim of the present study was to investigate chromosomal alterations in a large set of homogeneous tumors, 98 endometrioid adenocarcinomas. We also wanted to evaluate differences in chromosomal alterations in the different groups of tumors in relation to stage, survival and invasive or metastatic properties of the tumors. Comparative genomic hybridization (CGH) was used to detect chromosomal alterations in tissue samples from 98 endometrioid adenocarcinomas. All chromosomes were involved in DNA copy number variations at least once in the tumor material, but certain changes were recurrent and rather specific. Among the specific changes, it was possible to identify 39 chromosomal regions displaying frequent DNA copy number alterations. The most frequent alteration was detected at 1q25-->q42, in which gains were found in 30 cases (30%). Gains at 19pter-->p13.1 were detected in 26 tumors (26%) and at 19q13.1-->q13.3 in 19 tumors (19%). Increased copy numbers were also detected at 8q (8q21-->q22 and 8q22-->qter), at a relatively high rate, in 17 cases (17%). Furthermore, gains at 10q21-->q23 and 10p were found in 14 (14%) and 13 cases (13%), respectively. The most common losses were found in the three regions 4q22-->qter, 16q21-->qter and 18q21-->qter, all of which were detected in eight of the 98 tumors (8%). We also detected differences between the tumors from deceased patients and from survivors. Gain at 1q25-->q42 was more commonly detected in the tumors from patients who died of cancer. We noted that the regions most affected differed in the different surgical stages (I-IV). The results of the CGH analysis identify specific chromosomal regions affected by copy number changes, appropriate objects for further genetic studies.  相似文献   

6.
By fluorescence in situ hybridization (FISH) using mouse probes, we assigned homologues for cathepsin E (Ctse), protocadherin 10 (Pcdh10, alias OL-protocadherin, Ol-pc), protocadherin 13 (Pcdh13, alias protocadherin 2c, Pcdh2c), neuroglycan C (Cspg5) and myosin X (Myo10) genes to rat chromosomes (RNO) 13q13, 2q24-->q25, 18p12-->p11, 8q32.1 and 2q22.1-->q22.3, respectively. Similarly, homologues for mouse Ctse, Pcdh13, Cspg5 and Myo10 genes and homologues for rat Smad2 (Madh2) and Smad4 (Madh4) genes were assigned to Chinese hamster chromosomes (CGR) 5q28, 2q17, 4q26, 2p29-->p27, 2q112-->q113 and 2q112-->q113, respectively. The chromosome assignments of homologues of Ctse and Cspg5 reinforced well-known homologous relationships among mouse chromosome (MMU) 1, RNO 13 and CGR 5q, and among MMU 9, RNO 8 and CGR 4q, respectively. The chromosome locations of homologues for Madh2, Madh4 and Pcdh13 genes suggested that inversion events were involved in chromosomal rearrangements in the differentiation of MMU 18 and RNO 18, whereas most of MMU 18 is conserved as a continuous segment in CGR 2q. Furthermore, the mapping result of Myo10 and homologues suggested an orthologous segment of MMU 15, RNO 2 and CGR 2.  相似文献   

7.
In a study of DMBA-induced rat fibrosarcomas we repeatedly found deletions and/or amplifications in the long arm of rat chromosome 1 (RNO1). Comparative genome hybridization showed that there was amplification involving RNO1q31-->q53 in one of the DMBA-induced rat fibrosarcoma tumors (LB31) and a cell culture derived from it. To identify the amplified genes we physically mapped rat genes implicated in cancer and analyzed them for signs of amplification. The genes were selected based on their locations in comparative maps between rat and man. The rat proto-oncogenes Ccnd1, Fgf4, and Fgf3 (HSA11q13.3), were mapped to RNO1q43 by fluorescence in situ hybridization (FISH). The Ems1 gene was mapped by radiation hybrid (RH) mapping to the same rat chromosome region and shown to be situated centromeric to Ccnd1 and Fgf4. In addition, the proto-oncogenes Hras (HSA11p15.5) and Igf1r (HSA15q25-->q26) were mapped to RNO1q43 and RNO1q32 by FISH and Omp (HSA11q13.5) was assigned to RNO1q34. PCR probes for the above genes together with PCR probes for the previously mapped rat genes Bax (RNO1q31) and Jak2 (RNO1q51-->q53) were analyzed for signs of amplification by Southern blot hybridization. Low copy number increases of the Omp and Jak2 genes were detected in the LB31 cell culture. Dual color FISH analysis of tumor cells confirmed that chromosome regions containing Omp and Jak2 were amplified and were situated in long marker chromosomes showing an aberrant banding pattern. The configuration of the signals in the marker chromosomes suggested that they had arisen by a break-fusion-bridge (BFB) mechanism.  相似文献   

8.
Comparative fluorescence in situ hybridization mapping using DNA libraries from flow-sorted mouse chromosomes and region-specific mouse BAC clones on rat chromosomes reveals chromosomal homologies between mouse (Mus musculus, MMU) and rat (Rattus norvegicus, RNO). Each of the MMU 2, 3, 4, 6, 7, 9, 12, 14, 15, 16, 18, 19, and X chromosomes paints only a single rat chromosome or chromosome segment and, thus, the chromosomes are largely conserved between the two species. In contrast, the painting probes for MMU chromosomes 1, 5, 8, 10, 11, 13, and 17 produce split hybridization signals in the rat, disclosing evolutionary chromosome rearrangements. Comparative mapping data delineate several large linkage groups on RNO 1, 2, 4, 7, and 14 that are conserved in human but diverged in the mouse. On the other hand, there are linkage groups in the mouse, i.e., on MMU 1, 8, 10, and 11, that are disrupted in both rat and human. In addition, we have hybridized probes for Nap2, p57, Igf2, H19, and Sh3d2c from MMU 7 to RNO 1q and found the orientation of the imprinting gene cluster and Sh3d2c to be the same in mouse and rat. Hybridization of rat genomic DNA shows blocks of (rat-specific) repetitive sequences in the pericentromeric region of RNO chromosomes 3-5, 7-13, and 20; on the short arms of RNO chromosomes 3, 12, and 13; and on the entire Y chromosome.  相似文献   

9.
Although it is established that the loss of function of both alleles of the RB1 gene is a prerequisite for the development of retinoblastoma, little is known about the genetic events that are required for tumor progression. We used comparative genomic hybridization (CGH) to search for DNA copy number changes in isolated unilateral retinoblastomas. From a series of 66 patients with retinoblastomas with somatic mutations in both RB1 alleles, tumor samples from 13 children with the youngest (2.0-9.8 months) and 13 with the oldest (36.2-84.1 months) age at operation were studied. Loss at 13q14, the location of RB1, was demonstrated in two tumors only. Recurring chromosome imbalances included gains at 6p (11/26), 1q (10/26), 2p (4/26), and 17q (4/26), gains of the entire chromosome 19 (3/26), and losses at 16q (9/26). A commonly gained region at 1q32 was identified. Increased dosage of GAC1, a candidate oncogene located in 1q32, was found in two of four tumors by Southern blot analysis. Comparison of the CGH findings revealed that retinoblastomas from children with an older age at operation showed significantly more frequent (13/13 cases vs 4/13 cases; P = 0.0005) and more complex genetic abnormalities (median, 5 changes/abnormal tumor vs median, 1.5 changes/abnormal tumor; P = 0.003) than retinoblastomas from children with a young age at operation. Gains at 1q, 2p, 17q, of the entire chromosome 19 and losses of 16q were restricted to the older age group. Our results suggest that the progression of retinoblastomas from older patients follows mutational pathways different from those of younger patients.  相似文献   

10.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

11.
Chromosomal imbalances were analyzed in 62 breast cancers with different DNA ploidy by CGH. The results of DNA image cytometry and CGH are consistent with peridiploid and aneuploid cases. The peritetraploid tumors harbored a high number of chromosomal imbalances, as a hint for an unfavorable prognosis. The quantitative analysis of imbalances highlighted the role of different physical constituents of the chromosome, and of chromosomal losses in different DNA ploidy groups. The peritetraploid and aneuploid tumors differed from the peridiploid tumors in losses at 8p and 18q. The peritetraploid cancers exhibited more gains at 8q, the aneuploid tumors more losses at 17p than their peridiploid counterparts. The aneuploid cases differed from the peritetraploid tumors in a higher number of losses at 11q and 14q. Combinations of imbalances provide further insights into the genetic background of DNA ploidy. Hypotheses for the progression from peridiploid to nondiploid breast cancers are given.  相似文献   

12.
Characteristic genetic changes underlying the metastatic progression of malignant melanoma is incompletely understood. The goal of our study was to explore specific chromosomal alterations associated with the aggressive behavior of this neoplasm. Comparative genomic hybridization was performed to screen and compare genomic imbalances present in primary and metastatic melanomas. Sixteen primary and 12 metastatic specimens were analyzed. We found that the pattern of chromosomal aberrations is similar in the two subgroups; however, alterations present only in primary and/or metastatic tumors were also discovered. The mean number of genetic changes was 6.3 (range 1-14) in primary and 7.8 (range 1-16) in metastatic lesions. Frequent losses involved 9p and 10q, whereas gains most often occurred at 1q, 6p, 7q, and 8q. Distinct, high-level amplifications were mapped to 1p12-p21 and 1p22-p31 in both tumor types. Amplification of 4q12-q13.1, 7q21.3-qter and 8q23-qter were detected only in primary tumors. The 20q13-qter amplicon was present in a metastatic tumor. The number of genetic alterations were significantly higher in primary tumors which developed metastases within one year after the surgery compared to tumors without metastasis during this time period. Fluorescence in situ hybridization with centromeric and locus-specific probes was applied to validate CGH results on a subset of tumors. Comparison of FISH and CGH data gave good correlation. The aggressive behavior of melanoma is associated with accumulation of multiple genetic alterations. Chromosome regions, which differ in the primary and metastatic lesions, may represent potential targets to identify metastases-related chromosomal alterations.  相似文献   

13.
Lipoblastoma is a benign uncommon soft-tissue-tumor resembling fetal adipose tissue affecting mainly children under three years of age. In lipoblastoma, the typical cytogenetic changes are clonal rearrangements involving chromosomal region 8q11-->q13. The oncogene PLAG1 (pleomorphic adenoma gene 1) is located within this chromosomal region on band 8q12. Recent reports have demonstrated that in lipoblastoma, the PLAG1 gene is activated by 'promoter-swapping'. Herein, we demonstrate that in lipoblastoma, the PLAG1 gene may also be activated by low-level amplification. We report on a lipoblastoma with the karyotype 48 approximately 50,XX,del(8)(q13q21.2),+del(8)(q13q21.2)x4[cp12]. Subsequent FISH analysis on uncultured tumor cells confirmed this result and demonstrated a low-level amplification of the chromosomal region 8pter-->8q13 and 8q21.2-->8qter. A partial monosomy was seen for the chromosomal region 8q13-->8q21.2. No other gains or losses were observed by CGH analysis. RT-PCR analysis showed that the PLAG1 gene is activated in the tumor sample of the lipoblastoma analyzed, in contrast to normal fatty tissue without PLAG1 expression. In conclusion, our results demonstrate that low-level amplification is a further mechanism of PLAG1 activation in lipoblastomas.  相似文献   

14.
Although recurrent chromosomal alterations occur in chronic lymphocytic leukemia (CLL), relatively few affected tumor suppressors and oncogenes have been implicated. To improve genetic characterization of CLL, we performed high-resolution gene copy number analysis of 20 CLL patients using oligonucleotide array comparative genomic hybridization (aCGH). The most recurrent losses were observed in 13q and 11q with variable sizes. The 11q losses varied between 7.44 Mb and 41.72 Mb in size and targeted ATM among others. Lost regions in 13q were generally smaller, spanning from 0.79 Mb to 29.33 Mb. The minimal common region (158 kb) in 13q14.3, which was also homozygously deleted in some cases, harbored five genes: TRIM13, KCNRG, DLEU2, DLEU1, and FAM10A4. Additionally, two micro-RNA genes (MIRN15A and MIRN16-1) locate to the region. New cryptic losses were detected in 1q23.2-->q23.3, 3p21.31, 16pter-->p13.3, 17p13.3-->p13.2, 17q25.3-->qter, and 22q11.22. In conclusion, our oligonucleotide aCGH study revealed novel aberrations and provided detailed genomic profiles of the altered regions.  相似文献   

15.
Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12 approximately q44 (Chr1:142188905-246084832), 7 (over the whole chromosome), 2p25.3 approximately p16.3 (Chr2:18179-47899074), and 17q 21.32 approximately q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1 approximately q21.3 (Chr14:37666271- 47282550), and 22q13.1 approximately q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.  相似文献   

16.
Genomic changes and HPV type in cervical carcinoma   总被引:5,自引:0,他引:5  
To identify chromosomal regions that may include the loci of abnormally expressed cellular genes and may be specifically altered depending on the histological subtype of the tumor, we studied primary cervical carcinoma using CGH and HPV genotyping. Eighty-seven percent of the primary tumors were positive for DNA of a "high-risk" HPV type (e.g., 16 or 18). In the cervical carcinomas, without reference to histologic subtype, overrepresentation of chromosome 3q was the most consistent chromosomal aberration with underrepresentation of chromosome 3p also a frequent finding. Chromosome arms 1q, 5p, 20q, and Xq were overrepresented in many tumors and 3p loss and 5p, 8q, and 16q gain were only associated with squamous cell carcinoma in this series.  相似文献   

17.
BACKGROUND: The relationship between DNA sequence copy number aberrations (DSCNAs) and DNA ploidy in head and neck squamous cell carcinomas (HNSCCs) is still controversial. Materials and Methods We analyzed DSCNAs by comparative genomic hybridization (CGH) combined with microdissection and DNA ploidy by laser scanning cytometry (LSC) in 18 surgically removed HNSCCs and compared the data. RESULTS: Copy number increases were most frequently observed on chromosomes 3q (16 cases), 8q (13 cases), and 12p (11 cases). Copy number decreases were observed on chromosome 3p (14 cases). LSC revealed DNA aneuploidy in 10 of the 18 cases. All DNA aneuploid tumors exhibited gain or amplification of DNA copy number at 12p11-12.1, whereas gain of DNA copy number was found in only 1 of 8 diploid tumors. DSCNAs were more frequent in DNA aneuploid tumors than in diploid tumors (P < 0.005). CONCLUSIONS: The present observations indicate a close relationship between DSCNAs and DNA ploidy in HNSCCs.  相似文献   

18.
DNA copy number changes were studied by comparative genomic hybridization on 10 tumor specimens of squamous cell carcinoma of cervix obtained from Korean patients. DNA was extracted from paraffin-embedded sections after removal of non-malignant cells by microdissection technique. Copy number changes were found in 8/10 tumors. The most frequent changes were chromosome 19 gains (n=6) and losses on chromosomes 4 (n=4), 5 (n=3), and 3p (n=3). A novel finding was amplification in chromosome arm 9p21-pter in 2 cases. Gains in 1, 3q, 5p, 6p, 8q, 16p, 17, and 20q and losses at 2q, 6q, 8p, 9q, 10p, 11, 13, 16q, and 18q were observed in at least one of the cases.  相似文献   

19.
Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma   总被引:6,自引:0,他引:6  
Ko YH  Choi KE  Han JH  Kim JM  Ree HJ 《Cytometry》2001,46(2):85-91
BACKGROUND: Nasal-type NK/T-cell lymphoma is a rare type of non-Hodgkin's lymphoma. The genetic changes associated with pathogenesis have not been well defined. This study investigates the nonrandom genetic alteration of nasal-type NK/T-cell lymphoma. METHODS: Nine cases were studied. Comparative genomic hybridization (CGH) was carried out using fresh tumor tissues of seven nasal-type NK/T-cell lymphomas. To complement the data by CGH, loss of heterozygosity (LOH) of chromosomes 6q, 1p, and 17p using polymorphic markers and p53 gene mutation by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) were analyzed. RESULTS: The DNA copy number changes of seven nasal-type NK/T-cell lymphomas were gains on chromosomes 2q(5), 13q(4), 10q(3), 21q(2), 3q(2), 5q(2), and 17q(2), and losses involving chromosomes 1p(4), 17p(4), 12q(3), 13q(2), and 6q(1). One of six cases informative for at least two markers for chromosome 6q showed LOH at D6S300, D6S1639, D6S261, D6S407, and D6S292. Two cases showing loss of 1p and 17q by CGH revealed LOH at D1S214, D1S503, and D17S559. P53 mutation was detected in exon 8 in one of nine cases. CONCLUSIONS: Frequent DNA losses at 1p, 17p, and 12q and gains at 2q, 13q, and 10q suggested that these regions could be targets for further molecular genetic analysis to investigate tumor suppressor genes or oncogenes associated with tumorigenesis of NK/T-cell lymphoma. Infrequent alteration of 6q contrary to previous studies raises doubt about an implication of 6q loss in the pathogenesis of early-stage NK/T-cell lymphoma. Further studies on more defined cases are required to verify their association.  相似文献   

20.
Comparative genomic hybridization (CGH) analysis was performed on both a pre- and post-chemotherapy hepatoblastoma from a 24-month-old female patient. The diagnostic sample obtained from a tru-cut biopsy was a mixed epithelial-mesenchymal tumor with both fetal and embryonal patterns present. In contrast, the post-chemotherapy tumor exhibited a prominent anaplastic large cell population focally reminiscent of pleomorphic hepatocellular carcinoma (HCC). CGH analysis indicated that there were similarities as well as differences in the gains and losses of genetic material in each tumor. The diagnostic sample had gains of chromosome 1q, 2, 2(q31q33), 7, 8q, 12(q15q22), 17q and 20 material, while the post-chemotherapy tumor had gains of 1q, 2, 7, 8q, 10, 17q and 20 material. In addition, the pre- and post-chemotherapy samples may have incurred loss of chromosome 17p material. The main differences between the two samples involved localized gain of 2(q31q33) and 12(q15q22) in the pre-chemotherapy sample, and gain of chromosome 10 material in the post-chemotherapy tumor. The patient subsequently developed metastatic nodules in her lungs, the histology of which was identical in pattern to the diagnostic pattern, and appeared to have localized gain of 2(q31q33) and 12(q15q22). These results are consistent with published results that gain of chromosome 8q and 20 are associated with an unfavorable prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号