首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leber hereditary optic neuropathy (LHON) was the first disease to be linked to the presence of a mitochondrial DNA (mtDNA) mutation. Nowadays over 95% of LHON cases are known to be caused by one of three primary mutations (m.11778G>A, m.14484T>C, and m.3460G>A). Reports for other (rare) primary mutations in LHON patients are not infrequent. Among those is the mutation m.3635G>A in the MT-ND1 gene which was reported to be pathogenic in a Russian LHON family. In this study, we report on a Chinese family with clinical features of LHON but without any of the three well-known primary mutations. Analysis of the complete mitochondrial genome in the proband revealed the presence of m.3635G>A and m.6228C>T, along with a full array of other variants that suggest the haplogroup M7b1. Evolutionary analysis indicates that site 3635, but not 6228, is highly conserved in vertebrates. Protein secondary-structure modeling for the MT-ND1 protein harboring amino acid change S110N indicates that mutant m.3635G>A decreases the protein hydrophobicity. Our current observations provide further support for a pathogenic role of m.3635G>A in patients with LHON.  相似文献   

2.
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.  相似文献   

3.
BackgroundThe cell cycle checkpoint kinase 2 (CHEK2) protein participates in the DNA damage response in many cell types. Germline mutations in CHEK2 (1100delC, IVS2+1G>A and I157T) have been impaired serine/threonine kinase activity and associated with a range of cancer types. This hospital-based case–control study aimed to investigate whether CHEK2 1100delC, IVS2+1G>A and I157T mutations play an important role in the development of colorectal cancer (CRC) in Turkish population.MethodsA total of 210 CRC cases and 446 cancer-free controls were genotyped for CHEK2 mutations by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-polymerase chain reaction (AS-PCR) methods.ResultsWe did not find the CHEK2 1100delC, IVS2+1G>A and I157T mutations in any of the Turkish subjects.ConclusionOur result demonstrate for the first time that CHEK2 1100delC, IVS2+1G>A and I157T mutations have not been agenetic susceptibility factor for CRC in the Turkish population. Overall, our data suggest that genotyping of CHEK2 mutations in clinical settings in the Turkish population should not be recommended. However, independent studies are need to validate our findings in a larger series, as well as in patients of different ethnic origins.  相似文献   

4.
Leber’s hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations—A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513—were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.  相似文献   

5.
张阿梅  姚永刚 《遗传》2013,35(2):123-135
Leber遗传性视神经病变(Leber hereditary optic neuropathy, LHON; MIM535000)是最典型的线粒体遗传病之一, 主要由线粒体DNA (Mitochondrial DNA, mtDNA)3个原发突变(Primary mutation, m.11778G>A、m.3460G> A 和m.14484T>C)引起。患者表现为无痛性双侧视力下降或丧失, 主要易感人群为青壮年男性。不完全外显(Incomplete penetrance)和性别偏好(Gender bias)是该病亟待解决的两大难题, 目前尚无有效的预防及治疗措施。文章对近年来LHON 的分子发病机制、临床症状及特点、体外实验和动物模型研究、预防及治疗等方面的研究进展进行综述, 并集中介绍了我们近期对于我国LHON患者的研究结果。  相似文献   

6.
Leber's hereditary optic neuroretinopathy (LHON) is manifested as a bilateral acute or subacute loss of central vision due to optic atrophy. It is linked to point mutations of mitochondrial DNA, which is inherited maternally. The most common mitochondrial DNA point mutations associated with LHON are G3460A, G11778A and T14484C. These mutations are linked with the defects of subunits of the complex I (NADH-dehydrogenase-ubiquinone reductase) in mitochondria. The G11778A mitochondrial DNA point mutation is manifested by a severe visual impairment. In this paper two Croatian families with the LHON G11778A mutation are presented. Three LHON patients from two families were younger males which had the visual acuity of 0.1 or below, the ophthalmoscopy revealed telangiectatic microangiopathy and papilloedema, while Goldmann kinetic perimetry showed a central scotoma. The mothers and female relatives were LHON mutants without symptoms, whereas their sons suffered from a severe visual impairment. Molecular diagnosis helps to explain the cause of LHON disease.  相似文献   

7.
Leber’s Hereditary Optic Neuropathy (LHON) is one of the commonest mitochondrial diseases. It causes total blindness, and predominantly affects young males. For the disease to develop, it is necessary for an individual to carry one of the primary mtDNA mutations 11778G>A, 14484T>C or 3460G>A. However these mutations are not sufficient to cause disease, and they do not explain the characteristic features of LHON such as the higher prevalence in males, incomplete penetrance, and relatively later age of onset. In order to explore the roles of nuclear encoded mitochondrial proteins in development of LHON, we applied a proteomic approach to samples from affected and unaffected individuals from 3 pedigrees and from 5 unrelated controls. Two-dimensional electrophoresis followed by MS/MS analysis in the mitochondrial lysate identified 17 proteins which were differentially expressed between LHON cases and unrelated controls, and 24 proteins which were differentially expressed between unaffected relatives and unrelated controls. The proteomic data were successfully validated by western blot analysis of 3 selected proteins. All of the proteins identified in the study were mitochondrial proteins and most of them were down regulated in 11778G>A mutant fibroblasts. These proteins included: subunits of OXPHOS enzyme complexes, proteins involved in intermediary metabolic processes, nucleoid related proteins, chaperones, cristae remodelling proteins and an anti-oxidant enzyme. The protein profiles of both the affected and unaffected 11778G>A carriers shared many features which differed from those of unrelated control group, revealing similar proteomic responses to 11778G>A mutation in both affected and unaffected individuals. Differentially expressed proteins revealed two broad groups: a cluster of bioenergetic pathway proteins and a cluster involved in protein quality control system. Defects in these systems are likely to impede the function of retinal ganglion cells, and may lead to the development of LHON in synergy with the primary mtDNA mutation.  相似文献   

8.
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.  相似文献   

9.
Leber遗传性视神经病变家系的线粒体基因突变分析   总被引:5,自引:0,他引:5  
林玲  陈贻锴  童绎  郑志竑  林建银  朱进伟 《遗传》2003,25(3):267-270
为探讨Leber遗传性视神经病变(Leber′s hereditary optic neuropathy,LHON)家系线粒体DNA(mtDNA)常见致病原发突变的频谱,用聚合酶链反应(polymerase chain reaction,PCR)和单链构象多态性(single-stranded conformational polymorphism,SSCP)以及DNA测序的方法,对13个家系22位临床诊断为LHON的患者及其母系亲属21人的线粒体DNA进行检测,同时检测71例正常人作为对照。临床拟诊为LHON的13个家系中,11个家系存在mtDNA位点11778 G→A突变,另2个家系存在14484位点T→C突变。说明中国LHON病人存在线粒体DNA 11778或14484位点突变,其中14484位点突变在国内尚未见报道。 Abstract:The purpose of the study is to investigate the frequency of common pathogenic primary mitochondrial DNA mutations in pedigrees of Leber′s hereditary optic neuropathy (LHON).Mutations were determined by polymerase chain reaction (PCR),single-stranded conformational polymorphism (SSCP) and DNA sequencing.Twenty-two patients with suspicion of LHON and twenty-one their maternal relatives underwent molecular genetic evaluation.Seventy-one normal individuals underwent molecular genetic evaluation as control at the same time.Members from 13 families with suspicion of LHON,11 families had nucleotide position nt11778 G→A mutations.Another 2 families had nt14484 T→C mutations.It is concluded that the point mutations at nucleotides 11778 and 14484 are primary LHON mutations,but the point mutation of nt14484 is rare in Chinese.  相似文献   

10.
Current screening methods, such as single strand conformational polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC) and direct DNA sequencing that are used for detecting mutation in Leber's hereditary optic neuropathy (LHON) subjects are time consuming and costly. Here we tested high-resolution melt (HRM) analysis for mtDNA primary mutations in LHON patients. In this study, we applied the high resolution melting (HRM) technology to screen mtDNA primary mutations in 50 LHON patients from their peripheral blood. In order to evaluate the reliability of this technique, we compared the results obtained by HRM and direct mtDNA sequencing. We also investigated the spectrum of three most common mtDNA mutations implicated in LHON in the Han Chinese population. The results showed HRM analysis differentiated all of the mtDNA primary mutations and identified 4 additional mtDNA mutations from 50 patients in the blind study. The prevalence of three primary mutations were 11778G>A (87.9%), 14484T>C (6.5%) and 3460G>A (1.7%) in the Han Chinese population. In conclusion, HRM analysis is a rapid, reliable, and low-cost tool for detecting mtDNA primary mutations and has practical applications in molecular genetics.  相似文献   

11.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder characterized by central vision loss in young adults. The majority of LHON cases around the world are associated with mutations in the mitochondrial genome at nucleotide positions (np) 3460, 11,778, and 14,484. Usually, these three mutations are screened in suspected LHON patients. The result is important not only in respect to the diagnosis but also as different LHON mutations lead to variations in expression, severity, and recovery of the disease. There are, however, a significant number of patients without any of these primary mutations. In these situations, genetic counselling of a patient and his family can be difficult. We sequenced the complete mitochondrial DNA (mtDNA) in 14 LHON patients with the typical clinical features but without a primary mtDNA mutation to evaluate the potential of extensive mutation screening for clinical purposes. Our results suggest to include the mutation at np 15,257 in a routine screening as well as the ND6 gene, a hot spot for LHON mutations. Screening for the secondary LHON mutations at np 4216 and np 13,708 may also help in making the diagnosis of LHON as these seem to modify the expression of LHON mutations. Although they do not allow to prove the clinical diagnosis, their presence increases the probability of LHON. Sequencing the complete mitochondrial genome can reveal novel and known rare disease causing mutations. However, considering the effort it adds little value for routine screening.  相似文献   

12.
13.
The nucleotide sequences of the mitochondrial genomes from patients with Leber hereditary optic neuropathy (LHON) were used for phylogenetic analysis to study the origin and population history of pathogenic mitochondrial mutations. Sequences of both the coding region (8300 bp) and the more rapidly evolving noncoding control region (1300 bp) were analyzed. Patients with the primary LHON mutations at nucleotides 3460, 11,778, and 14,484 were included in this study, as were LHON patients and non-LHON controls that lacked these primary mutations; some of the subjects also carried secondary LHON mutations. The phylogenetic analyses demonstrate that primary LHON mutations arose and were fixed multiple times within the population, even for the small set of LHON patients that was analyzed in these initial studies. In contrast, the secondary LHON mutations at nucleotides 4216, 4917, and 13,708 arose once: the mitochondrial genomes that carried these secondary mutations formed a well supported phylogenetic cluster that apparently arose 60,000 to 100,000 years ago. Previous studies found secondary LHON mutations at a higher frequency among LHON patients than among control subjects. However, this finding does not prove a pathogenetic role of these mutations in LHON. Instead, the increased frequency is more likely to reflect the population genetic history of secondary mutations relative to that of primary LHON mutations.  相似文献   

14.
Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as "primary" LHON mutations. Fifteen other "secondary" LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended to be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed chi2-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that approximately 75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases.  相似文献   

15.
According to a recent genome-wide linkage scan and association study of families with m.11778G>A in Thailand, two single nucleotide polymorphisms (SNPs) (rs3749446 and rs1402000) in the presenilins-associated rhomboid-like (PARL) gene were found to be associated with Leber hereditary optic neuropathy (LHON). In order to verify this association in Chinese LHON patients, we genotyped three PARL gene variants (rs3749446, rs953419, and rs1402000) in 179 patients with m.11778G>A and 170 patients with suspected LHON, and compared them to a control population containing the HapMap Chinese and 58 normal individuals analyzed in this study. We identified no association between these PARL gene SNPs and LHON in Chinese patients with m.11778G>A (P > 0.05). Haplotype analysis also showed no statistical difference among the three Chinese populations.  相似文献   

16.
Leber hereditary optic neuropathy (LHON) is the most extensively studied mitochondrial disease, with the majority of the cases being caused by one of three primary mitochondrial DNA (mtDNA) mutations. Incomplete disease penetrance and gender bias are two features of LHON and indicate involvement of additional genetic or environmental factors in the pathogenesis of the disorder. Haplogroups J, K, and H have been shown to influence the clinical expression of LHON in subjects harboring primary mutations in European families. However, whether mtDNA haplogroups would affect the penetrance of LHON in East Asian families has not been evaluated yet. By studying the penetrance of LHON in 1859 individuals from 182 Chinese families (including one from Cambodia) with the m.11778G→A mutation, we found that haplogroup M7b1′2 significantly increases the risk of visual loss, whereas M8a has a protective effect. Analyses of the complete mtDNA sequences from LHON families with m.11778G→A narrow the association of disease expression to m.12811T→C (Y159H) in the NADH dehydrogenase 5 gene (MT-ND5) in haplogroup M7b1′2 and suggest that the specific combination of amino acid changes (A20T-T53I) in the ATP synthase 6 protein (MT-ATP6) caused by m.8584G→A and m.8684C→T might account for the beneficial background effect of M8a. Protein secondary-structure prediction for the MT-ATP6 with the two M8a-specific amino acid changes further supported our inferences. These findings will assist in further understanding the pathogenesis of LHON and guide future genetic counseling in East Asian patients with m.11778G→A.  相似文献   

17.
Zhang S  Wang L  Hao Y  Wang P  Hao P  Yin K  Wang QK  Liu M 《Mitochondrion》2008,8(3):205-210
Leber's hereditary optic neuropathy (LHON) is a maternally inherited ocular disease which has been associated with three primary mitochondrial DNA mutations: G3640A, G11778A, and T14484C. In this study, we clinically characterized a Chinese family with complete penetrance of LHON. The patients in the family presented with variable clinical features. By direct DNA sequence analysis, we identified both T14484C mutation and a nearby T to C variant at nucleotide 14502 of mitochondria DNA. The T14502C variant altered I58 to V of the protein ND6, which was present in all patients of the family, but not in four unaffected family members and 200 normal controls. The co-existence of both T14484C mutation and T14502C substitution in all patients from the same LHON family suggests that T14502C may play a synergistic role with the primary mutation T14484C. The two variants together may account for the complete penetrance and absence of marked gender bias and visual recovery in the Chinese LHON family although we cannot exclude the possibility of simultaneous involvement of additional mitochondrial variant(s).  相似文献   

18.
Leber's hereditary optic neuropathy (LHON) has traditionally been considered a disease causing severe and permanent visual loss in young adult males. In nearly all families with LHON it is associated with one of three pathogenic mitochondrial DNA (mtDNA) mutations, at bp 11778, 3460 or 14484. The availability of mtDNA confirmation of a diagnosis of LHON has demonstrated that LHON occurs with a wider range of age at onset and more commonly in females than previously recognised. In addition, analysis of patients grouped according to mtDNA mutation has demonstrated differences both in the clinical features of visual failure and in recurrence risks to relatives associated with each of the pathogenic mtDNA mutations. Whilst pathogenic mtDNA mutations are required for the development of LHON, other factors must be reponsible for the variable penetrance and male predominance of this condition. Available data on a number of hypotheses including the role of an additional X-linked visual loss susceptibility locus, impaired mitochondrial respiratory chain activity, mtDNA heteroplasmy, environmental factors and autoimmunity are discussed. Subacute visual failure is seen in association with all three pathogenic LHON mutations. However, the clinical and experimental data reviewed suggest differences in the phenotype associated with each of the three mutations which may reflect variation in the disease mechanisms resulting in this common end-point.  相似文献   

19.
Leber's hereditary optic neuropathy (LHON) is characterized by maternally transmitted, bilateral, central vision loss in young adults. It is caused by mutations in the mitochondrial DNA (mtDNA) encoded genes that contribute polypeptides to NADH dehydrogenase or complex I. Four mtDNA variants, the nucleotide pair (np) 3460A, 11778A, 14484C, and 14459A mutations, are known as "primary" LHON mutations and are found in most, but not all, of the LHON families reported to date. Here, we report the extensive genetic and biochemical analysis of five Russian families from the Novosibirsk region of Siberia manifesting maternally transmitted optic atrophy consistent with LHON. Three of the five families harbor known LHON primary mutations. Complete sequence analysis of proband mtDNA in the other two families has revealed novel complex I mutations at nps 3635A and 4640C, respectively. These mutations are homoplasmic and have not been reported in the literature. Biochemical analysis of complex I in patient lymphoblasts and transmitochondrial cybrids demonstrated a respiration defect with complex-I-linked substrates, although the specific activity of complex I was not reduced. Overall, our data suggests that the spectrum of mtDNA mutations associated with LHON in Russia is similar to that in Europe and North America and that the np 3635A and 4640C mutations may be additional mtDNA complex I mutations contributing to LHON expression.  相似文献   

20.
As multiple sclerosis (MS) has long been known to be associated with Leber, hereditary optic neuropathy (LHON), a disease caused by mitochondrial (mtDNA) mutations, in this study we assessed possible involvement of mtDNA point mutation in MS patients. Fifty-two MS patients whose disease was confirmed with revised McDonald criteria and referred to Iranian Center of Neurological Research of Imam Khomeini hospital during 2006–2007 entered the study. Secondary mtDNA mutations, age, gender, clinical disability according to expanded disability status scale (EDSS), course of the disease, and presenting symptoms were the variables investigated in this study. DNA purification was performed by Diatom DNA Extraction Kit. Analysis of data was done by SPSS V11.5. The prevalent mutations with frequency of 19.2% were J, L, and T haplogroups. Haplotype A was more prevalent in patients with younger age of onset (P-value = 0.012) and high proportion of haplogroup H was associated with optic nerve involvement (P-value = 0.015). No motor symptoms were seen in haplogroup H patients. There is no significant relationship between duration of the disease and EDSS in different mutation of mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号