首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca2+ ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca2+ stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores. Mutations of genes encoding calcium have been implicated in the etiology of a diverse group of nerve and muscle diseases. These mutations have been identified in humans, mice and other organisms. In this review, we will summarize calcium channelopathies of humans and mice. Of the ten calcium channel α1 subunits cloned and sequenced (see ref. 1), disease-causing mutations have been found in CaV1.4 and CaV2.1 in the nervous system, and CaV1.1 and CaV1.2 in muscle. Mutations in calcium channel auxiliary subunits (α2δ, β and γ) have also been associated with both human and/or mouse neurological diseases. The disease-causing mutations may provide new insight into the cell biological roles of calcium channels as well as into relationships between structure and function. In addition, understanding how the mutations affect the physiology of the cell could lead to advances in disease treatment by relieving symptoms or slowing the progression of the disease. However, due to the multifaceted functions of calcium in the cell, the correlation between molecular mutation, physiological alterations and disease etiology is neither straightforward nor easily understood. Since calcium is an important intracellular signaling molecule, altered calcium channel function can give rise to widespread changes in cellular function. Indeed, serious diseases result from mutations that cause trivial alterations of calcium currents analyzed in vitro.  相似文献   

2.
In many cell types agonist-receptor activation leads to a rapid and transient release of Ca(2+) from intracellular stores via activation of inositol 1,4,5 trisphosphate (InsP(3)) receptors (InsP(3)Rs). Stimulated cells activate store- or receptor-operated calcium channels localized in the plasma membrane, allowing entry of extracellular calcium into the cytoplasm, and thus replenishment of intracellular calcium stores. Calcium entry must be finely regulated in order to prevent an excessive intracellular calcium increase. Junctate, an integral calcium binding protein of endo(sarco)plasmic reticulum membrane, (a) induces and/or stabilizes peripheral couplings between the ER and the plasma membrane, and (b) forms a supramolecular complex with the InsP(3)R and the canonical transient receptor potential protein (TRPC) 3 calcium entry channel. The full-length protein modulates both agonist-induced and store depletion-induced calcium entry, whereas its NH(2) terminus affects receptor-activated calcium entry. RNA interference to deplete cells of endogenous junctate, knocked down both agonist-activated calcium release from intracellular stores and calcium entry via TRPC3. These results demonstrate that junctate is a new protein involved in calcium homeostasis in eukaryotic cells.  相似文献   

3.
Ryanodine receptors(Ry Rs) are the calcium release channels of sarcoplasmic reticulum(SR) that provide the majority of calcium ions(Ca2+) necessary to induce contraction of cardiac and skeletal muscle cells.In their intracellular environment,Ry R channels are regulated by a variety of cytosolic and luminal factors so that their output signal(Ca2+) induces finely-graded cell contraction without igniting cellular processes that may lead to aberrant electrical activity(ventricular arrhythmias) or cellular remodeling.The importance of Ry R dysfunction has been recently highlighted with the demonstration that point mutations in RYR2,the gene encoding for the cardiac isoform of the Ry R(Ry R2),are associated with catecholaminergic polymorphic ventricular tachycardia(CPVT),an arrhythmogenic syndrome characterized by the development of adrenergically-mediated ventricular tachycardia in individuals with an apparently normal heart.Here we summarize the state of the field in regards to the main arrhythmogenic mechanisms triggered by Ry R2 channels harboring mutations linked to CPVT.Most CPVT mutations characterized to date endow Ry R2 channels with a gain of function,resulting in hyperactive channels that release Ca2+ spontaneously,especially during diastole.The spontaneous Ca2+ release is extruded by the electrogenic Na+/Ca2+ exchanger,which depolarizes the external membrane(delayed afterdepolarization or DAD) and may trigger untimely action potentials.However,a rare set of CPVT mutations yield Ry R2 channels that are intrinsically hypo-active and hypo-responsive to stimuli,and it is unclear whether these channels release Ca2+ spontaneously during diastole.We discuss novel cellular mechanisms that appear more suitable to explain ventricular arrhythmias due to Ry R2 loss-of-function mutations.  相似文献   

4.
FK-506结合蛋白对钙释放通道的调控   总被引:1,自引:0,他引:1  
细胞内自由钙作为一种重要的细胞信使广泛地参与细胞生理功能调控.胞内钙库(内质网系和肌浆网系)对调节细胞内自由钙水平起着重要的作用.钙库膜上的钙释放通道(ryanodine受体和三磷酸肌醇受体)受许多因素调控,其中之一就是新近研究得相当多的FK506结合蛋白.免疫抑制剂FK506能特异地结合钙库上一种分子质量为12 ku左右的蛋白,这种FK506结合蛋白与钙释放通道形成一种紧密连接的复合体,在正常生理情况下对钙释放通道起着十分重要的调控作用.  相似文献   

5.
Meissner G 《Cell calcium》2004,35(6):621-628
The release of Ca(2+) ions from intracellular stores is a key step in a wide variety of cellular functions. In striated muscle, the release of Ca(2+) from the sarcoplasmic reticulum (SR) leads to muscle contraction. Ca(2+) release occurs through large, high-conductance Ca(2+) release channels, also known as ryanodine receptors (RyRs) because they bind the plant alkaloid ryanodine with high affinity and specificity. The RyRs are isolated as 30S protein complexes comprised of four 560 kDa RyR2 subunits and four 12 kDa FK506 binding protein (FKBP12) subunits. Multiple endogenous effector molecules and posttranslational modifications regulate the RyRs. This review focuses on current research toward understanding the control of the isolated cardiac Ca(2+) release channel/ryanodine receptor (RyR2) by Ca(2+), calmodulin, thiol oxidation/reduction and nitrosylation, and protein phosphorylation.  相似文献   

6.
Neuronal calcium stores   总被引:4,自引:0,他引:4  
Neuronal calcium stores associated with specialized intracellular organelles, such as endoplasmic reticulum and mitochondria, dynamically participate in generation of cytoplasmic calcium signals which accompany neuronal activity. They fulfil a dual role in neuronal Ca2+ homeostasis being involved in both buffering the excess of Ca2+ entering the cytoplasm through plasmalemmal channels and providing an intracellular source for Ca2+. Increase of Ca2+ content within the stores regulates the availability and magnitude of intracellular calcium release, thereby providing a mechanism which couples the neuronal activity with functional state of intracellular Ca2+ stores. Apart of 'classical' calcium stores (endoplasmic reticulum and mitochondria) other organelles (e.g. nuclear envelope and neurotransmitter vesicles) may potentially act as a functional Ca2+ storage compartments. Calcium ions released from internal stores participate in many neuronal functions, and might be primarily involved in regulation of various aspects of neuronal plasticity.  相似文献   

7.
Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca(2+) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca(2+) release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca(2+) in vivo. Vacuolar Ca(2+), which is the major intracellular Ca(2+) store in yeast, is required for this response, whereas extracellular Ca(2+) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca(2+) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca(2+) release. After this release, low cytosolic Ca(2+) is restored and vacuolar Ca(2+) is replenished through the activity of Vcx1p, a Ca(2+)/H(+) exchanger. These studies reveal a novel mechanism of internal Ca(2+) release and establish a new function for TRP channels.  相似文献   

8.
The cytotoxicity of infectious agents can be mediated by disruption of calcium signaling in target cells. Outer membrane proteins of the spirochete Treponema denticola, a periodontal pathogen, inhibit agonist-induced Ca(2+) release from internal stores in gingival fibroblasts, but the mechanism is not defined. We determined here that the major surface protein (Msp) of T. denticola perturbs calcium signaling in human fibroblasts by uncoupling store-operated channels. Msp localized in complexes on the cell surface. Ratio fluorimetry showed that in cells loaded with fura-2 or fura-C18, Msp induced cytoplasmic and near-plasma membrane Ca(2+) transients, respectively. Increased conductance was confirmed by fluorescence quenching of fura-2-loaded cells with Mn(2+) after Msp treatment. Calcium entry was blocked with anti-Msp antibodies and inhibited by chelating external Ca(2+) with EGTA. Msp pretreatment reduced the amplitude of [Ca(2+)](i) transients upon challenge with ATP or thapsigargin. In experiments using cells loaded with mag-fura-2 to report endoplasmic reticulum Ca(2+), Msp reduced Ca(2+) efflux from endoplasmic reticulum stores when ATP was used as an agonist. Msp alone did not induce Ca(2+) release from these stores. Msp inhibited store-operated influx of extracellular calcium following intracellular Ca(2+) depletion by thapsigargin and also promoted the assembly of subcortical actin filaments. This actin assembly was blocked by chelating intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester. The reduced amplitude of agonist-induced transients and inhibition of store-operated Ca(2+) entry due to Msp were reversed by latrunculin B, an inhibitor of actin filament assembly. Thus, Msp retards Ca(2+) release from endoplasmic reticulum stores, and it inhibits subsequent Ca(2+) influx by uncoupling store-operated channels. Actin filament rearrangement coincident with conformational uncoupling of store-operated calcium fluxes is a novel mechanism by which surface proteins and toxins of pathogenic microorganisms may damage host cells.  相似文献   

9.
The versatility of Ca(2+) as a messenger in multiple signaling events requires that the concentration of calcium ions within the cytoplasm be highly regulated. In particular, the release of calcium from intracellular stores must often be linked to calcium influx across the cell membrane. Capacitative calcium entry, whereby the depletion of intracellular Ca(2+) stores induces the influx of extracellular calcium, is a crucial element of concerted calcium signaling. Investigations into the phenomenon are contributing to a new appreciation for the organized cytoplasmic framework that supports calcium signaling.  相似文献   

10.
Capacitative calcium entry in the nervous system   总被引:6,自引:0,他引:6  
Putney JW 《Cell calcium》2003,34(4-5):339-344
Capacitative calcium entry is a process whereby the depletion of Ca(2+) from intracellular stores (likely endoplasmic or sarcoplasmic reticulum) activates plasma membrane Ca(2+) channels. Current research has focused on identification of capacitative calcium entry channels and the mechanism by which Ca(2+) store depletion activates the channels. Leading candidates for the channels are members of the transient receptor potential (TRP) superfamily, although no single gene or gene product has been definitively proven to mediate capacitative calcium entry. The mechanism for activation of the channels is not known; proposals fall into two general categories, either a diffusible signal released from the Ca(2+) stores when their Ca(2+) levels become depleted, or a more direct protein-protein interaction between constituents of the endoplasmic reticulum and the plasma membrane channels. Capacitative calcium entry is a major mechanism for regulated Ca(2+) influx in non-excitable cells, but recent research has indicated that this pathway plays an important role in the function of neuronal cells, and may be important in a number of neuropathological conditions. This review will summarize some of these more recent findings regarding the role of capacitative calcium entry in normal and pathological processes in the nervous system.  相似文献   

11.
Depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) influx in smooth muscle cells, but the native store-operated channels that mediate such influx remain unidentified. Recently we demonstrated that calcium influx factor produced by yeast and human platelets with depleted Ca(2+) stores activates small conductance cation channels in excised membrane patches from vascular smooth muscle cells (SMC). Here we characterize these channels in intact cells and present evidence that they belong to the class of store-operated channels, which are activated upon passive depletion of Ca(2+) stores. Application of thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca(2+) ATPase, to individual SMC activated single 3-pS cation channels in cell-attached membrane patches. Channels remained active when inside-out membrane patches were excised from the cells. Excision of membrane patches from resting SMC did not by itself activate the channels. Loading SMC with BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), which slowly depletes Ca(2+) stores without a rise in intracellular Ca(2+), activated the same 3-pS channels in cell-attached membrane patches as well as whole cell nonselective cation currents in SMC. TG- and BAPTA-activated 3-pS channels were cation-selective but poorly discriminated among Ca(2+), Sr(2+), Ba(2+), Na(+), K(+), and Cs(+). Open channel probability did not change at negative membrane potentials but increased significantly at high positive potentials. Activation of 3-pS channels did not depend on intracellular Ca(2+) concentration. Neither TG nor a variety of second messengers (including Ca(2+), InsP3, InsP4, GTPgammaS, cyclic AMP, cyclic GMP, ATP, and ADP) activated 3-pS channels in inside-out membrane patches. Thus, 3-pS nonselective cation channels are present and activated by TG or BAPTA-induced depletion of intracellular Ca(2+) stores in intact SMC. These native store-operated cation channels can account for capacitative Ca(2+) influx in SMC and can play an important role in regulation of vascular tone.  相似文献   

12.
Ca(2+) release from internal stores as a result of activation of phospholipase C or inhibition of the endoplasmic reticulum pump is accompanied by Ca(2+) influx from the extracellular space. Measurement of intracellular calcium concentration and fluorescence quenching in Fura2-loaded cells showed that platelets preincubated in lithium have significantly higher basal, but lower agonist-stimulated influx of Mn(2+) (acting as a surrogate of Ca(2+) influx), than platelets reloaded with calcium in a normal sodium medium. There is no difference in the basal entry of divalent ion in platelets preincubated in sodium, lithium, or N-methyl glucamine in the absence of calcium. In platelets preincubated in lithium there is a higher basal Mn(2+) entry without further increase upon store depletion by thapsigargin. In contrast, a significant increase in the divalent ion influx was found in sodium or N-methyl glucamine attributable to the opening of channels sensitive to store depletion. In the absence of extracellular calcium, the empty store opens channels and Li(+) did not have additional effect on channels that are already open. The refilling of the stores with Ca(2+) suppresses Mn(2+) entry after sodium or NMG preincubation, but not after lithium preincubation. We propose that lithium induces a calcium influx throughout store-operated channels. This hypothesis may explain the lack of additivity, in cell preincubated in lithium, of basal entry and thapsigargin-triggered entry of calcium.  相似文献   

13.
Ion channels are proteins, which facilitate the ions flow throught biological membranes. In recent years the structure as well as the function of the plasma membrane ion channels have been well investigated. The knowledge of intracellular ion channels however is still poor. Up till now, the calcium channel described in endoplasmatic reticulum and mitochondrial porine are the examples of intracellular ion channels, which have been well characterized. The mitochondrial potassium channels: regulated by ATP (mitoK(ATP)) and of big conductance activated by Ca2+ (mitoBK(Ca)), which were described in inner mitochondrial membrane, play a key role in the protection of heart muscle against ischemia. In this review the last date concerning the mitochondrial ion channels as well as they function in cell metabolism have been presented.  相似文献   

14.
钙离子(Ca2+)是重要的第二信使,通过与效应蛋白的结合和解离,以及在不同细胞器之间的穿梭运动而精确调控细胞活动,参与多种重要生命过程。细胞内具有精确调节Ca2+时空分布的调控系统。在静息状态下,细胞内的游离Ca2+浓度约为100 nmol/L;而当细胞受到信号刺激后,胞内的Ca2+浓度可上升至1000 nmol/L甚至更高。细胞中存在多种跨膜运送Ca2+的膜蛋白,以精确调节Ca2+浓度的时空动态变化,其中,细胞质膜上的多种Ca2+通道(包括电压门控通道、受体门控通道、储存控制通道等),以及内质网/肌质网和线粒体等胞内"钙库"膜上的雷诺丁受体、三磷酸肌醇受体等膜蛋白复合物,均可提升胞内Ca2+浓度,而细胞质膜上的钠钙交换体、质膜Ca2+-ATP酶、"钙库"膜上的内质网Ca2+-ATP酶、线粒体Ca2+单向转运体等,可将Ca2+浓度降低至静息态水平。质膜钙ATP酶是向细胞外运送Ca2+的关键膜蛋白,本文将对其结构、功能及其酶活性的调控机制做一简要综述。  相似文献   

15.
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.  相似文献   

16.
17.
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli.  相似文献   

18.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the same cell. In this study, we have examined the interaction between capacitative calcium entry and arachidonic acid-activated calcium entry, which co-exist in HEK293 cells. These two pathways exhibit mutual antagonism. That is, capacitative calcium entry is potently inhibited by arachidonic acid, and arachidonic acid-activated entry is inhibited by the pre-activation of capacitative calcium entry with thapsigargin. In the latter case, the inhibition does not seem to result from a direct action of thapsigargin, inhibition of endoplasmic reticulum Ca(2+) pumps, depletion of Ca(2+) stores, or entry of Ca(2+) through capacitative calcium entry channels. Rather, it seems that a discrete step in the pathway signaling capacitative calcium entry interacts with and inhibits the arachidonic acid pathway. The findings reveal a novel process of mutual antagonism between two distinct calcium entry pathways. This mutual antagonism may provide an important protective mechanism for the cell, guarding against toxic Ca(2+) overload.  相似文献   

19.
Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones.  相似文献   

20.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号