首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the time it was pioneered in 1992, intravital imaging of tumors at cellular resolution has offered us the extremely important opportunity of “seeing biology”. However, until now, most studies were monitoring tumor cell behavior in the same animal over short times, requiring the combining of acquired data into a hypothesis via statistical analysis. In the last several months, different groups have independently developed techniques to extend the time scale of intravital imaging to several days. This improvement allows one to address the connection between tumor cell behavior and the microenvironment which surrounds them. We can now assess dynamics of the cell-cell interactions in tumors, analyze tumor cell fate and changes in the tumor extracellular matrix which accompany tumor progression.  相似文献   

2.
Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.  相似文献   

3.
Intravital microscopy (IVM) has revolutionized our understanding of single-cell behavior in complex tissues by enabling real-time observation of molecular and cellular processes in their natural environment. In preclinical research, IVM has emerged as a standard tool for mechanistic studies of therapy response and the rational design of new treatment strategies. Technological developments keep expanding the imaging depth and quality that can be achieved in living tissue, and the maturation of imaging modalities such as fluorescence and phosphorescence lifetime imaging facilitates co-registration of individual cell dynamics with metabolic tissue states. Correlation of IVM with mesoscopic and macroscopic imaging modalities further promotes the translation of mechanistic insights gained by IVM into clinically relevant information. This review highlights some of the recent advances in IVM that have made the transition from experimental optical techniques to practical applications in basic and preclinical research.  相似文献   

4.
The canonical nuclear factor-κB (NF-κB) signaling pathway controls a gene network important in the cellular inflammatory response. Upon activation, NF-κB/RelA is released from cytoplasmic inhibitors, from where it translocates into the nucleus, subsequently activating negative feedback loops producing either monophasic or damped oscillatory nucleo-cytoplasmic dynamics. Although the population behavior of the NF-κB pathway has been extensively modeled, the sources of cell-to-cell variability are not well understood. We describe an integrated experimental-computational analysis of NF-κB/RelA translocation in a validated cell model exhibiting monophasic dynamics. Quantitative measures of cellular geometry and total cytoplasmic concentration and translocated RelA amounts were used as priors in Bayesian inference to estimate biophysically realistic parameter values based on dynamic live cell imaging studies of enhanced GFP-tagged RelA in stable transfectants. Bayesian inference was performed on multiple cells simultaneously, assuming identical reaction rate parameters, whereas cellular geometry and initial and total NF-κB concentration-related parameters were cell-specific. A subpopulation of cells exhibiting distinct kinetic profiles was identified that corresponded to differences in the IκBα translation rate. We conclude that cellular geometry, initial and total NF-κB concentration, IκBα translation, and IκBα degradation rates account for distinct cell-to-cell differences in canonical NF-κB translocation dynamics.  相似文献   

5.
It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn’t need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range.  相似文献   

6.
Dynamic imaging of cellular interactions with extracellular matrix   总被引:6,自引:2,他引:4  
Adhesive and proteolytic interactions of cells with components of the extracellular matrix (ECM) are fundamental to morphogenesis, tissue assembly and remodeling, and cell migration as well as signal acquisition from tissue-bound factors. The visualization from fixed samples provides snapshot-like, static information on the cellular and molecular dynamics of adhesion receptor and protease functions toward ECM, such as interstitial fibrillar tissues and basement membranes. Recent technological developments additionally support the dynamic imaging of ECM scaffolds and the interaction behavior of cells contained therein. These include differential interference contrast, confocal reflection microscopy, optical coherence tomography, and multiphoton microscopy and second-harmonic generation imaging. Most of these approaches are combined with fluorescence imaging using derivates of GFP and/or other fluorescent dyes. Dynamic 3D imaging has revealed an unexpected degree of dynamics and turnover of cell adhesion and migration as well as basic mechanisms that lead to proteolytic remodeling of connective tissue by stromal cells and invading tumor cells.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0682-0The Histochemistry and Cell Biology Lecture presented at the 12th International Congress of Histochemistry and Cytochemistry in La Jolla, California, USA, 24–28 July 2004  相似文献   

7.
Lymph nodes (LNs) are secondary lymphoid organs, which are strategically located throughout the body to allow for trapping and presentation of foreign antigens from peripheral tissues to prime the adaptive immune response. Juxtaposed between innate and adaptive immune responses, the LN is an ideal site to study immune cell interactions1,2. Lymphocytes (T cells, B cells and NK cells), dendritic cells (DCs), and macrophages comprise the bulk of bone marrow-derived cellular elements of the LN. These cells are strategically positioned in the LN to allow efficient surveillance of self antigens and potential foreign antigens3-5. The process by which lymphocytes successfully encounter cognate antigens is a subject of intense investigation in recent years, and involves an integration of molecular contacts including antigen receptors, adhesion molecules, chemokines, and stromal structures such as the fibro-reticular network2,6-12. Prior to the development of high-resolution real-time fluorescent in vivo imaging, investigators relied on static imaging, which only offers answers regarding morphology, position, and architecture. While these questions are fundamental in our understanding of immune cell behavior, the limitations intrinsic with this technique does not permit analysis to decipher lymphocyte trafficking and environmental clues that affect dynamic cell behavior. Recently, the development of intravital two-photon laser scanning microscopy (2P-LSM) has allowed investigators to view the dynamic movements and interactions of individual cells within live LNs in situ12-16. In particular, we and others have applied this technique to image cellular behavior and interactions within the popliteal LN, where its compact, dense nature offers the advantage of multiplex data acquisition over a large tissue area with diverse tissue sub-structures11,17-18. It is important to note that this technique offers added benefits over explanted tissue imaging techniques, which require disruption of blood, lymph flow, and ultimately the cellular dynamics of the system. Additionally, explanted tissues have a very limited window of time in which the tissue remains viable for imaging after explant. With proper hydration and monitoring of the animal''s environmental conditions, the imaging time can be significantly extended with this intravital technique. Here, we present a detailed method of preparing mouse popliteal LN for the purpose of performing intravital imaging.  相似文献   

8.
The protein kinases ATM and DNA-PKcs play critical roles in the cellular response to DNA double strand breaks (DSBs). ATM and DNA-PKcs are activated in response to DSBs and play several important roles in propagation of the damage signal and for the repair of DNA damage. Recent work from several groups, including ours, has focused on studying the dynamics of each of these proteins at DSBs and the requirements and factors which play a role(s) in this process. The use of live cell imaging of fluorescently-tagged ATM and DNA-PKcs has allowed us to study the real-time response of these proteins to laser-generated DNA damage in vivo. Here, we will extensively discuss the behavior of the ATM and DNA-PKcs proteins at DSB sites.  相似文献   

9.
Swarming represents a special case of bacterial behavior where motile bacteria migrate rapidly and collectively on surfaces. Swarming and swimming motility of bacteria has been studied well for rigid, self-propelled rods. In this study we report a strain of Vibrio alginolyticus, a species that exhibits similar collective motility but a fundamentally different cell morphology with highly flexible snake-like swarming cells. Investigating swarming dynamics requires high-resolution imaging of single cells with coverage over a large area: thousands of square microns. Researchers previously have employed various methods of motion analysis but largely for rod-like bacteria. We employ temporal variance analysis of a short time-lapse microscopic image series to capture the motion dynamics of swarming Vibrio alginolyticus at cellular resolution over hundreds of microns. Temporal variance is a simple and broadly applicable method for analyzing bacterial swarming behavior in two and three dimensions with both high-resolution and wide-spatial coverage. This study provides detailed insights into the swarming architecture and dynamics of Vibrio alginolyticus isolate B522 on carrageenan agar that may lay the foundation for swarming studies of snake-like, nonrod-shaped motile cell types.  相似文献   

10.
In eukaryotic cells, a major proportion of the cellular proteins localize to various subcellular organelles where they are involved in organelle-specific cellular processes. Thus, the localization of a particular protein in the cell is an important part of understanding the physiological role of the protein in the cell. Various approaches such as subcellular fractionation, immunolocalization and live imaging have been used to define the localization of organellar proteins. Of these various approaches, the most powerful one is the live imaging because it can show in vivo dynamics of protein localization depending on cellular and environmental conditions without disturbing cellular structures. However, the live imaging requires the ability to detect the organelles in live cells. In this study, we report generation of a new set of transgenic Arabidopsis plants using various organelle marker proteins fused to a fluorescence protein, monomeric Cherry (mCherry). All these markers representing different subcellular organelles such as chloroplasts, mitochondria, peroxisomes, endoplasmic reticulum (ER) and lytic vacuole showed clear and specific signals regardless of the cell types and tissues. These marker lines can be used to determine localization of organellar proteins by colocalization and also to study the dynamics of organelles under various developmental and environmental conditions.  相似文献   

11.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

12.
The study of intracellular transport pathways at epithelial cell barriers that line diverse tissue sites is fundamental to understanding tissue homeostasis. A major impediment to investigating such processes at the subcellular level has been the lack of imaging approaches that support fast three-dimensional (3D) tracking of cellular dynamics in thick cellular specimens. Here, we report significant advances in multifocal plane microscopy and demonstrate 3D single molecule tracking of rapid protein dynamics in a 10 micron thick live epithelial cell monolayer. We have investigated the transferrin receptor (TfR) pathway, which is not only essential for iron delivery but is also of importance for targeted drug delivery across cellular barriers at specific body sites, such as the brain that is impermeable to blood-borne substances. Using multifocal plane microscopy, we have discovered a cellular process of intercellular transfer involving rapid exchange of Tf molecules between two adjacent cells in the monolayer. Furthermore, 3D tracking of Tf molecules at the lateral plasma membrane has led to the identification of different modes of endocytosis and exocytosis, which exhibit distinct temporal and intracellular spatial trajectories. These results reveal the complexity of the 3D trafficking pathways in epithelial cell barriers. The methods and approaches reported here can enable the study of fast 3D cellular dynamics in other cell systems and models, and underscore the importance of developing advanced imaging technologies to study such processes.  相似文献   

13.
The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ~0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.  相似文献   

14.
《Biophysical journal》2022,121(20):3826-3836
The dynamic behavior of plasma membrane proteins mediates various cellular processes such as cellular motility, communication, and signaling. It is widely accepted that the dynamics of the membrane proteins is determined either by the interactions of the transmembrane domain with the surrounding lipids or by the interactions of the intracellular domain with cytosolic components such as cortical actin. Although initiation of different cellular signaling events at the plasma membrane has been attributed to the extracellular domain (ECD) properties recently, the impact of ECDs on the dynamic behavior of membrane proteins is rather unexplored. Here, we investigate how ECD properties influence protein dynamics in the lipid bilayer by reconstituting ECDs of different sizes or glycosylation in model membrane systems and analyzing ECD-driven protein sorting in lipid domains as well as protein mobility. Our data show that increasing the ECD mass or glycosylation leads to a decrease in ordered domain partitioning and diffusivity. Our data reconcile different mechanisms proposed for the initiation of cellular signaling by linking the ECD size of membrane proteins with their localization and diffusion dynamics in the plasma membrane.  相似文献   

15.
Chromatin conformation,localization,and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states,the requirement for cell fix-ation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activ-ities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review,we describe currently-available approaches for imaging single genomic loci in cells,with special focus on clus-tered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition,we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches,and potential solutions to address these challenges. We anticipate that,with continued refinement of CRISPR-based imaging techniques,significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.  相似文献   

16.
Understanding and treatment of spinal cord pathology is limited in part by a lack of time-lapse in vivo imaging strategies at the cellular level. We developed a chronically implanted spinal chamber and surgical procedure suitable for time-lapse in vivo multiphoton microscopy of mouse spinal cord without the need for repeat surgical procedures. We routinely imaged mice repeatedly for more than 5 weeks postoperatively with up to ten separate imaging sessions and observed neither motor-function deficit nor neuropathology in the spinal cord as a result of chamber implantation. Using this chamber we quantified microglia and afferent axon dynamics after a laser-induced spinal cord lesion and observed massive microglia infiltration within 1 d along with a heterogeneous dieback of axon stumps. By enabling chronic imaging studies over timescales ranging from minutes to months, our method offers an ideal platform for understanding cellular dynamics in response to injury and therapeutic interventions.  相似文献   

17.
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.  相似文献   

18.
Focusing light on infection in four dimensions   总被引:1,自引:0,他引:1  
The fusion of cell biology with microbiology has bred a new discipline, cellular microbiology, in which the primary aim is to understand host-pathogen interactions at a tissue, cellular and molecular level. In this context, we require techniques allowing us to probe infection in situ and extrapolate quantitative information on its spatiotemporal dynamics. To these ends, fluorescent light-based imaging techniques offer a powerful tool, and the state-of-the-art is defined by paradigms using so-called multidimensional (multi-D) imaging microscopy. Multi-D imaging aims to visualize and quantify biological events through time and space and, more specifically, refers to combinations of: three (3D, volume), four (4D, time) and five (5D, multiwavelength)-dimensional recordings. Successful multi-D imaging depends upon understanding the available technologies and their limitations. This is especially true in the field of microbiology where visualization of infectious/pathogenic activities inside living host systems presents particular technical challenges. Thus, as multi-D imaging rapidly becomes a common bench tool to the cellular microbiologist, this review provides the new user with some of the necessary technical insight required to get the best from these methods.  相似文献   

19.
Lee JK  Lu S  Madhukar A 《PloS one》2010,5(10):e13437
Quantitative information on the dynamics of multiple molecular processes in individual live cells under controlled stress is central to the understanding of the cell behavior of interest and the establishment of reliable models. Here, the dynamics of the apoptosis regulator intracellular Ca(2+), apoptosis effector caspase-3/7, and morphological changes, as well as temporal correlation between them at the single cell level, are examined in retinal gangling cell line (differentiated RGC-5 cells) undergoing apoptosis at elevated hydrostatic pressure using a custom-designed imaging platform that allows long-term real-time simultaneous imaging of morphological and molecular-level physiological changes in large numbers of live cells (beyond the field-of-view of typical microscopy) under controlled hydrostatic pressure. This examination revealed intracellular Ca(2+) elevation with transient single or multiple peaks of less than 0.5 hour duration appearing at the early stages (typically less than 5 hours after the onset of 100 mmHg pressure) followed by gradual caspase-3/7 activation at late stages (typically later than 5 hours). The data reveal a strong temporal correlation between the Ca(2+) peak occurrence and morphological changes of neurite retraction and cell body shrinkage. This suggests that Ca(2+) elevation, through its impact on ion channel activity and water efflux, is likely responsible for the onset of apoptotic morphological changes. Moreover, the data show a significant cell-to-cell variation in the onset of caspase-3/7 activation, an inevitable consequence of the stochastic nature of the underlying biochemical reactions not captured by conventional assays based on population-averaged cellular responses. This real-time imaging study provides, for the first time, statistically significant data on simultaneous multiple molecular level changes to enable refinements and testing of models of the dynamics of mitochondria-mediated apoptosis. Further, the platform developed and the approach has direct significance to the study of a variety of signaling pathway phenomena.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号