首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Properdin amplifies the alternative pathway of complement activation. In the present study, we evaluated its role in the development of collagen antibody-induced arthritis (CAIA).

Methods

Arthritis was induced by intraperitoneal injection of a collagen antibody cocktail into properdin-deficient (KO) and wild-type (WT) C57BL/6 mice. Symptoms of disease were evaluated daily. The degree of joint damage was assessed histologically and with immunostaining for bone-resorption markers. Phenotypes of cell populations, their receptor expression, and intracellular cytokine production were determined with flow cytometry. Osteoclast differentiation of bone marrow (BM) precursors was evaluated by staining for tartrate-resistant acid phosphatase (TRAP).

Results

Properdin-deficient mice developed less severe CAIA than did WT mice. They showed significantly improved clinical scores and downregulated expression of bone-resorption markers in the joints at day 10 of disease. The frequencies of Ly6G+CD11b+ cells were fewer in BM, blood, and synovial fluid (SF) of KO than of WT CAIA mice. The receptor activator of nuclear factor κB ligand (RANKL) was downregulated on arthritic KO neutrophils from BM and the periphery. Decreased C5a amounts in KO SF contributed to lower frequencies of CD5aR+-bearing neutrophils. In blood, surface C5aR was detected on KO Ly6G+ cells as a result of low receptor engagement. Circulating CD4+ T cells had an altered ability to produce interleukin (IL)-17 and interferon (IFN)-γ and to express RANKL. In KO CAIA mice, decreased frequencies of CD4+ T cells in the spleen were related to low CD86 expression on Ly6GhighCD11b+ cells. Arthritic KO T cells spontaneously secreted IFN-γ but not IL-17 and IL-6, and responded to restimulation with less-vigorous cytokine production in comparison to WT cells. Fewer TRAP-positive mature osteoclasts were found in KO BM cell cultures.

Conclusions

Our data show that the active involvement of properdin in arthritis is related to an increased proinflammatory cytokine production and RANKL expression on immune cells and to a stimulation of the RANKL-dependent osteoclast differentiation.  相似文献   

2.

Background

Toll-like receptors (TLRs) are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4) is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS) (septic shock model).

Methods

Wild type (WT), TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later.

Results

Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNFα) ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7) and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively) compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed.

Conclusions

These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.  相似文献   

3.

Introduction

Endotoxin tolerance improves outcomes from gram negative sepsis but the underlying mechanism is not known. We determined if endotoxin tolerance before or after pneumococcal sepsis improved survival and the role of lymphocytes in this protection.

Methods

Mice received lipopolysaccharide (LPS) or vehicle before or after a lethal dose of Streptococcus pneumoniae. Survival, quantitative bacteriology, liver function, and cytokine concentrations were measured. We confirmed the necessity of Toll-like receptor 4 (TLR4) for endotoxin tolerance using C3H/HeN (TLR4 replete) and C3H/HeJ (TLR4 deficient) mice. The role of complement was investigated through A/J mice deficient in C5 complement. CBA/CaHN-Btkxid//J mice with dysfunctional B cells and Rag-1 knockout (KO) mice deficient in T and B cells delineated the role of lymphocytes.

Results

Endotoxin tolerance improved survival from pneumococcal sepsis in mice with TLR4 that received LPS pretreatment or posttreatment. Survival was associated with reduced bacterial burden and serum cytokine concentrations. Death was associated with abnormal liver function and blood glucose concentrations. Endotoxin tolerance improved survival in A/J and CBA/CaHN-Btkxid//J mice but not Rag-1 KO mice.

Conclusions

TLR4 stimulation before or after S. pneumoniae infection improved survival and was dependent on T-cells but did not require an intact complement cascade or functional B cells.  相似文献   

4.

Background

The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases.

Methods

TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C).

Results

There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy.

Conclusion

These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.  相似文献   

5.

Background

Results from epidemiological studies indicate a close association between periodontitis and type 2 diabetes mellitus. However, the mechanism linking periodontitis to glucose intolerance (GI) and insulin resistance (IR) is unknown. We therefore tested the hypothesis that periodontitis induces the development of GI/IR through a liver Toll-like receptor 4 (TLR4) dependent mechanism.

Methods

TLR4 chimeric mice were developed by bone marrow transplantation using green fluorescent protein expressing TLR4WT mouse (GFPWT) as donor and TLR4 WT or TLR4-/- as recipient mice (GFPWT:WT and GFPWT:KO chimeras respectively). These chimeras were subjected to experimental chronic periodontitis induced by repeated applications of LPS to the gingival sulci for 18 weeks. The levels of GI/IR were monitored and plasma cytokines and LPS were determined at 18 weeks when differences in glucose tolerance were most apparent. Cytokine gene expression was measured in liver tissue by qPCR.

Results

Alveolar bone loss was significantly greater in GFPWT:WT chimeras treated with LPS compared with chimeras treated with PBS or GFPWT:KO chimeras. However, the degree of gingival inflammation was similar between GFPWT:WT and GFPWT:KO mice with LPS application. Severe GI/IR occurred in GFPWT:WT chimeras but not in the GFPWT:KO chimeras that were subjected to 18 weeks of LPS. Serum LPS was detected only in animals to which LPS was applied and the level was similar in GFPWT:WT and GFPWT:KO mice at the 18 week time point. Surprisingly, there was no significant difference in the plasma levels of IL1β, IL6 and TNFα at 18 weeks in spite of the severe GI/IR in the GFPWT:WT chimeras with LPS application. Also, no difference in the expression of TNFα or IL6 mRNA was detected in the liver of GFPWT:WT vs GFPWT:KO mice. In contrast, liver IL1β expression was significantly greater in GFPWT:WT chimeras compared to GFPWT:KO chimeras treated with LPS.

Conclusion

We observed that GFPWT:WT, but not GFPWT:KO chimeras, treated with LPS developed GI/IR despite similar degrees of gingival inflammation, circulating cytokine levels, and LPS concentrations. We conclude that LPS from periodontitis sites has a pivotal role in triggering the development of GI/IR through a mechanism that involves TLR4 expression by resident macrophages/Kupffer cells in the liver.  相似文献   

6.

Background

Membrane bound guanylyl cyclase-G (mGC-G), a novel form of GC mediates ischemia and reperfusion (IR)-induced renal injury. We investigated the roles of mGC-G in intestinal IR-induced jejunal damage, inflammation, and apoptosis.

Materials and methods

Male C57BL/6 wild-type (WT) and mGC-G gene knockout (KO) mice were treated with a sham operation or 45 min of superior mesenteric arterial obstruction followed by 3, 6, 12, or 24 h of reperfusion.

Results

Sham-operated KO mice had significantly lower plasma nitrate and nitrite (NOx) levels and jejunal villus height, crypt depth, and protein expression of phosphorylated-nuclear factor-kappa-B (NF-κB), phosphorylated-c-Jun N-terminal kinases (JNK) 2/3, phosphorylated-p38, and B-cell lymphoma-2 (Bcl-2). They had significantly greater jejunal interleukin-6 mRNA, cytochrome c protein, and apoptotic index compared with sham-operated WT mice. Intestinal IR significantly decreased plasma NOx in WT mice and increased plasma NOx in KO mice. The jejunal apoptotic index and caspase 3 activities were significantly increased, and nuclear phosphorylated-NF-κB and phosphorylated-p38 protein were significantly decreased in WT, but not KO mice with intestinal IR. After reperfusion, KO mice had an earlier decrease in jejunal cyclic GMP, and WT mice had an earlier increase in jejunal proliferation and a later increase in cytosol inhibitor of kappa-B-alpha. Intestinal IR induced greater increases in plasma and jejunal interleukin-6 protein in WT mice and a greater increase in jejunal interleukin-6 mRNA in KO mice.

Conclusions

mGC-G is involved in the maintenance of jejunal integrity and intestinal IR-induced inflammation and apoptosis. These results suggest that targeting cGMP pathway might be a potential strategy to alleviate IR-induced jejunal damages.  相似文献   

7.

Background

Perilipin 2 (Plin2) is a lipid droplet protein that has roles in both lipid and glucose homeostasis. An increase in Plin2 in liver is associated with the development of steatosis, glucose intolerance, and ceramide accumulation in alcoholic liver disease. We investigated the role of Plin2 on energy balance and glucose and lipid homeostasis in wildtype and Plin2 knockout (Plin2KO) mice chronically fed a Lieber-DeCarli liquid ethanol or control diet for six weeks.

Methods

We performed in vivo measurements of energy intake and expenditure; body composition; and glucose tolerance. After sacrifice, liver was dissected for histology and lipid analysis.

Results

We found that neither genotype nor diet had a significant effect on final weight, body composition, or energy intake between WT and Plin2KO mice fed alcohol or control diets. Additionally, alcohol feeding did not affect oxygen consumption or carbon dioxide production in Plin2KO mice. We performed glucose tolerance testing and observed that alcohol feeding failed to impair glucose tolerance in Plin2KO mice. Most notably, absence of Plin2 prevented hepatic steatosis and ceramide accumulation in alcohol-fed mice. These changes were related to downregulation of genes involved in lipogenesis and triglyceride synthesis.

Conclusions

Plin2KO mice chronically fed alcohol are protected from hepatic steatosis, glucose intolerance, and hepatic ceramide accumulation, suggesting a critical pathogenic role of Plin2 in experimental alcoholic liver disease.  相似文献   

8.

Introduction

Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.

Conclusions

Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.  相似文献   

9.

Background

MicroRNA-21 (miR-21) is overexpressed in most inflammatory diseases, but its physiological role in gut inflammation and tissue injury is poorly understood. The goal of this work is to understand the role of miR-21 in colitis and damage progression of intestine in a genetically modified murine model.

Methods

Experimental colitis was induced in miR-21 KO and wild-type (WT) mice by 3.5% dextran sulphate sodium (DSS) administration for 7 days. Disease activity index(DAI), blood parameters, intestinal permeability, histopathologic injury, cytokine and chemokine production, and epithelial cells apoptosis were examined in colons of miR-21 KO and WT mice.

Results

miR-21 was overexpressed in intestine of inflammatory bowel diseases (IBD) and acute intestinal obstruction (AIO) patients when compared with normal intestinal tissues. Likewise, miR-21 was up-regulated in colon of IL-10 KO mice when compared with control mice. WT mice rapidly lost weight and were moribund 5 days after treatment with 3.5% DSS, while miR-21 KO mice survived for at least 6 days. Elevated leukocytes and more severe histopathology were observed in WT mice when compared with miR-21 KO mice. Elevated levels of TNF-α and macrophage inflammatory protein-2(MIP-2) in colon culture supernatants from WT mice exhibited significant higher than miR-21 KO mice. Furthermore, CD3 and CD68 positive cells, intestinal permeability and apoptosis of epithelial cells were significantly increased in WT mice when compared with miR-21 KO mice. Finally, we found that miR-21 regulated the intestinal barrier function through modulating the expression of RhoB and CDC42.

Conclusion

Our results suggest that miR-21 is overexpressed in intestinal inflammation and tissue injury, while knockout of miR-21 in mice improve the survival rate in DSS-induced fatal colitis through protecting against inflammation and tissue injury. Therefore, attenuated expression of miR-21 in gut may prevent the onset or progression of inflammatory bowel disease in patients.  相似文献   

10.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

11.
12.

Introduction

Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work suggested implication of the IL-33/ST2 axis in the pathogenesis of human and mouse arthritis. Here, we directly investigated the role of endogenous IL-33 in K/BxN serum transfer-induced arthritis by using IL-33 knockout (KO) mice.

Methods

Arthritis was induced by injection of complete K/BxN serum or purified IgG. Disease severity was monitored by clinical and histological scoring.

Results

K/BxN serum transfer induced pronounced arthritis with similar incidence and severity in IL-33 KO and wild-type (WT) mice. In contrast, disease development was significantly reduced in ST2 KO mice. IL-33 expression in synovial tissue was comparable in arthritic WT and ST2 KO mice, and absent in IL-33 KO mice. Transfer of purified arthritogenic IgG instead of complete K/BxN serum also resulted in similar arthritis severity in IL-33 KO and WT mice, excluding a contribution of IL-33 contained in the serum of donor mice to explain this result. We investigated additional potential confounding factors, including purity of genetic background, but the mechanisms underlying reduced arthritis in ST2 KO mice remained unclear.

Conclusions

The data obtained with IL-33 KO mice indicate that endogenous IL-33 is not required for the development of joint inflammation in K/BxN serum transfer-induced arthritis. On the contrary, arthritis severity was reduced in ST2 KO mice. This observation might relate to IL-33 independent effects of ST2, and/or reveal the existence of confounding variables affecting the severity of joint inflammation in these KO strains.  相似文献   

13.

Background

Pseudomonas aeruginosa (PA) infection is involved in various lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. However, treatment of PA infection is not very effective in part due to antibiotic resistance. α1-antitrypsin (A1AT) has been shown to reduce PA infection in humans and animals, but the underlying mechanisms remain unclear. The goal of our study is to test whether a novel endogenous host defense protein, short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is involved in the therapeutic effect of A1AT during lung PA infection.

Method

SPLUNC1 knockout (KO) and littermate wild-type (WT) mice on the C57BL/6 background were intranasally infected with PA to determine the therapeutic effects of A1AT. A1AT was aerosolized to mice 2 hrs after the PA infection, and mice were sacrificed 24 hrs later. PA load and inflammation were quantified in the lung, and SPLUNC1 protein in bronchoalveolar lavage (BAL) fluid was examined by Western blot.

Results

In WT mice, PA infection significantly increased neutrophil elastase (NE) activity, but reduced SPLUNC1 protein in BAL fluid. Notably, PA-infected mice treated with A1AT versus bovine serum albumin (BSA) demonstrated higher levels of SPLUNC1 protein expression, which are accompanied by lower levels of NE activity, lung bacterial load, and pro-inflammatory cytokine production. To determine whether A1AT therapeutic effects are dependent on SPLUNC1, lung PA load in A1AT- or BSA-treated SPLUNC1 KO mice was examined. Unlike the WT mice, A1AT treatment in SPLUNC1 KO mice had no significant impact on lung PA load and pro-inflammatory cytokine production.

Conclusion

A1AT reduces lung bacterial infection in mice in part by preventing NE-mediated SPLUNC1 degradation.  相似文献   

14.

Background

Secreted Protein Acidic and Rich in Cysteine (SPARC) is expressed during tissue repair and regulates cellular proliferation, migration and cytokine expression. The aim was to determine if SPARC modifies intestinal inflammation.

Methods

Wild-type (WT) and SPARC-null (KO) mice received 3% dextran sodium sulphate (DSS) for 7 days. Inflammation was assessed endoscopically, clinically and histologically. IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-12/IL23p40, TNF-α, IFN-γ, RANTES, MCP-1, MIP-1α, MIP-1β, MIG and TGF-β1 levels were measured by ELISA and cytometric bead array. Inflammatory cells were characterised by CD68, Ly6G, F4/80 and CD11b immunofluorescence staining and regulatory T cells from spleen and mesenteric lymph nodes were assessed by flow cytometry.

Results

KO mice had less weight loss and diarrhoea with less endoscopic and histological inflammation than WT animals. By day 35, all (n = 13) KO animals completely resolved the inflammation compared to 7 of 14 WT mice (p<0.01). Compared to WTs, KO animals at day 7 had less IL1β (p = 0.025) and MIG (p = 0.031) with higher TGFβ1 (p = 0.017) expression and a greater percentage of FoxP3+ regulatory T cells in the spleen and draining lymph nodes of KO animals (p<0.01). KO mice also had fewer CD68+ and F4/80+ macrophages, Ly6G+ neutrophils and CD11b+ cells infiltrating the inflamed colon.

Conclusions

Compared to WT, SPARC KO mice had less inflammation with fewer inflammatory cells and more regulatory T cells. Together, with increased TGF-β1 levels, this could aid in the more rapid resolution of inflammation and restoration of the intestinal mucosa suggesting that the presence of SPARC increases intestinal inflammation.  相似文献   

15.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

16.

Background

The integration of host genetics, environmental triggers and the microbiota is a recognised factor in the pathogenesis of barrier function diseases such as IBD. In order to determine how these factors interact to regulate the host immune response and ecological succession of the colon tissue-associated microbiota, we investigated the temporal interaction between the microbiota and the host following disruption of the colonic epithelial barrier.

Methodology/Principal Findings

Oral administration of DSS was applied as a mechanistic model of environmental damage of the colon and the resulting inflammation characterized for various parameters over time in WT and Nod2 KO mice.

Results

In WT mice, DSS damage exposed the host to the commensal flora and led to a migration of the tissue-associated bacteria from the epithelium to mucosal and submucosal layers correlating with changes in proinflammatory cytokine profiles and a progressive transition from acute to chronic inflammation of the colon. Tissue-associated bacteria levels peaked at day 21 post-DSS and declined thereafter, correlating with recruitment of innate immune cells and development of the adaptive immune response. Histological parameters, immune cell infiltration and cytokine biomarkers of inflammation were indistinguishable between Nod2 and WT littermates following DSS, however, Nod2 KO mice demonstrated significantly higher tissue-associated bacterial levels in the colon. DSS damage and Nod2 genotype independently regulated the community structure of the colon microbiota.

Conclusions/Significance

The results of these experiments demonstrate the integration of environmental and genetic factors in the ecological succession of the commensal flora in mammalian tissue. The association of Nod2 genotype (and other host polymorphisms) and environmental factors likely combine to influence the ecological succession of the tissue-associated microflora accounting in part for their association with the pathogenesis of inflammatory bowel diseases.  相似文献   

17.

Background

Melioidosis, caused by infection with Burkholderia (B.) pseudomallei, is a severe illness that is endemic in Southeast Asia. Osteopontin (OPN) is a phosphorylated glycoprotein that is involved in several immune responses including induction of T-helper 1 cytokines and recruitment of inflammatory cells.

Methodology and Principal Findings

OPN levels were determined in plasma from 33 melioidosis patients and 31 healthy controls, and in wild-type (WT) mice intranasally infected with B. pseudomallei. OPN function was studied in experimental murine melioidosis using WT and OPN knockout (KO) mice. Plasma OPN levels were elevated in patients with severe melioidosis, even more so in patients who went on to die. In patients who recovered plasma OPN concentrations had decreased after treatment. In experimental melioidosis in mice plasma and pulmonary OPN levels were also increased. Whereas WT and OPN KO mice were indistinguishable during the first 24 hours after infection, after 72 hours OPN KO mice demonstrated reduced bacterial numbers in their lungs, diminished pulmonary tissue injury, especially due to less necrosis, and decreased neutrophil infiltration. Moreover, OPN KO mice displayed a delayed mortality as compared to WT mice. OPN deficiency did not influence the induction of proinflammatory cytokines.

Conclusions

These data suggest that sustained production of OPN impairs host defense during established septic melioidosis.  相似文献   

18.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

19.

Background

Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO).

Methodology and Findings

To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection.

Conclusions

In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.  相似文献   

20.

Background

Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.

Methods

Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.

Results

BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.

Conclusions

These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号