首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that sigma‐1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3‐methyl‐6‐chloro‐7,8‐hydroxy‐1‐[3‐methylphenyl]‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine), an atypical dopamine receptor‐1 agonist, has been recently identified as a potent allosteric modulator of sigma‐1 receptor. Here, we investigated the anti‐inflammatory effects of SKF83959 in lipopolysaccharide (LPS)‐stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro‐inflammatory mediators, such as tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma‐1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma‐1 receptors, and enhanced the inhibitory effects of DHEA on LPS‐induced microglia activation in a synergic manner. Furthermore, in a microglia‐conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS‐activated microglia toward HT‐22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma‐1 receptors by SKF83959 inhibits microglia‐mediated inflammation.

  相似文献   


2.
Dopamine agonist-stimulated [35S]GTPgammaS binding to membrane G proteins was studied in select brain regions under experimental conditions that permit the activation of receptor coupling to the G proteins Gi, Gs, or Gq. Agents studied were agonists known to be effective at various dopamine receptor/effector systems and included quinelorane (D2-like/Gi), SKF38393 (D1-like/Gq, D1-like/Gs), SKF85174 (D1-like/Gs), and SKF83959 (D1-like/Gq). Dopamine and SKF38393 significantly stimulated [35S]GTPgammaS binding to normal striatal membranes by 161% and 67% above controls. Deoxycholate, which enhances agonist-induced phospholipase C (PLC) stimulation, markedly enhanced the agonistic effects of dopamine and SKF38393 to 530% and 637% above controls, respectively. The enhancing effects of deoxycholate were reversed if it was washed off the membranes before agonist addition. The thiol-reducing agent, dithiothreitol, completely abolished the effects of SKF38393 and SKF83959, whereas SKF85174 effects were augmented. Agonist responses were concentration-related, and highest efficacies were obtained in the hippocampus, thus paralleling both the brain regional distribution and agonist efficacies previously observed in phosphoinositide hydrolysis assays. These findings suggest that D1-like receptor conformations that mediate agonist stimulation of Gs/adenylylcyclase may be structurally different from those that mediate Gq/PLC activation. Although the exact mechanism of deoxycholate's effect awaits elucidation, the results are consistent with the emerging concept of functional selectivity whereby deoxycholate could create a membrane environment that facilitates the transformation of the receptor from a conformation that activates Gs/adenylylcyclase to one that favors Gq/PLC signaling.  相似文献   

3.
We examined the effect of chronic nicotine treatment on dopaminergic activity by measuring the effects of D1 and D2 dopamine (DA) receptor agonists and antagonists on tritium release from mouse striatum preloaded with [3H]DA. The radioactivity released during superfusion was separated on alumina columns and the distribution and efflux of [3H]DA and its main 3H-labeled metabolites were quantified. After preloading by incubation with [3H]DA, the electrical stimulation-evoked tritium overflow was higher in striatum prepared from nicotine-treated mice, whereas in vitro addition of nicotine caused a similar increase in tritium release from striatum of untreated and chronic nicotine-treated mice. The overflow of [3H]DA and its 3H-metabolites exhibited similar distribution patterns in [3H]DA-preloaded striatum dissected from untreated and chronic nicotine-pretreated mice, indicating that repeated injections with nicotine did not alter the metabolism of [3H]DA taken up by the tissue. (-)-Quinpirole, a selective agonist for D2 DA receptors, and apomorphine, a nonselective D1/D2 agonist, inhibited the electrical stimulation-induced tritium efflux from striatum of untreated mice, whereas (+/-)-sulpiride, a D2 DA receptor antagonist, enhanced the evoked release of tritium. These changes in tritium efflux effected by (-)-quinpirole and (+/-)-sulpiride reflected changes in [3H]DA release and not in DA metabolism, as shown by separation of the released radioactivity on alumina columns. The D1 receptor agonist (+/-)-SKF-38393 did not affect the tritium overflow, whereas the D1 receptor antagonist (+)-SCH-23390 exerted a stimulatory action but only at a high concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.1-30 micromol/L improved H2O2-reduced cell viability in a dose-dependent manner. The anti-apoptotic action of SKF83959 was partially abolished by pre-application of the D1 antagonist SCH23390 (30 micromol/L) and the PI 3-kinase (PI 3-K) inhibitor LY294002 but not by the MEK1/2 inhibitor PD98059 (30 micromol/L). Moreover, SKF83959 treatment significantly inhibited H2O2-activated glycogen synthase kinase-3beta (GSK-3beta) which was associated with the drug's neuroprotective effect, but this inhibition was attenuated by SCH23390 and a selective PI 3-K inhibitor. Moreover, the application of either SKF83959 or a pharmacological inhibitor of GSK-3beta attenuated the inhibition by H2O2 on the expression of inducible NO synthase and production of NO. This indicates that D1-like receptor, presumably PI-linked D1 receptor, -mediated alteration of PI 3-K/Akt/GSK-3beta pathway is involved in the neuroprotection by SKF83959. In addition, SKF83959 also effectively decreased the level of the lipid peroxidation and increased the activity of GSH-peroxidase altered by H2O2. These results suggest that SKF83959 exerts its neuroprotective effect through both receptor-dependent and independent mechanisms: Inhibition of GSK-3beta and consequently increasing the expression of inducible NO synthase via putative PI-linked DAR; and its anti-oxidative activity which is independent of DAR.  相似文献   

5.
Although our recent report demonstrates the essential involvement of up-regulation of a regulator of intracellular Ca(2+) concentration, type 1 inositol 1,4,5-trisphosphate receptors (IP(3) Rs-1), mediated via dopamine D1-like receptor (D1DR) stimulation in the cocaine-induced psychological dependence, the exact mechanisms of regulation of IP(3) R-1 expression by D1DRs have not yet been clarified. This study attempted to clarify these mechanisms using mouse cerebral cortical neurons. An agonist for phosphatidylinositide-linked D1DRs, SKF83959, induced dose- and time-dependently IP(3) R-1 protein up-regulation following its mRNA increase without cAMP production. U73122 (a phospholipase C inhibitor), BAPTA-AM (an intracellular calcium chelating reagent), W7 (a calmodulin inhibitor), KN-93 (a calmodulin-dependent protein kinases inhibitor), and FK506 (a calcineurin inhibitor), significantly inhibited the SKF83959-induced IP(3) R-1 up-regulation. Furthermore, immunohistochemical examinations showed that SKF83959 increased expression of both cFos and cJun in nucleus as well as enhanced translocation of both calcineurin and NFATc4 complex to nucleus from cytoplasm. In addition, SKF83959 directly recruited binding of both AP-1 and NFATc4 to IP(3) R-1 promoter region. These results indicate that D1DR activation induces IP(3) R-1 up-regulation via increased translocation of AP-1 as well as NFATc4 in Gαq protein-coupled calcium signaling transduction pathway.  相似文献   

6.
On isolated multiporal neurons of spinal cord of amniocoete larva of the brook lamprey Lampetra planeri, by the patch-clamp method in configuration "the whole cell", a modulating effect of dopamine on potential-activated Na+ currents was studied. Application of dopamine (10 microM) was shown to produce a complex action on the sodium current amplitude. In some cases a decrease of the amplitude, on average, by 13.5 +/- 2.2% was found, while in others--an increase, on average, by 8.6 +/- 6.1%. The modulation dopamine effect was not accompanied by any changes either of the threshold of the current appearance or of resistance of neuronal cell membranes. Pharmacological analysis with use of dopamine agonist has shown that the agonist of D1-receptors (-)-SKF-38393 (10 microM) decreases the Na+ current amplitude, whereas the agonist of D2-receptors (-)-quinpirole (10 microM) can produce in different cells both an increase, by 30.7 +/- 17.0 %, and a decrease, by 13.2 +/- 3.1%, of the Na+ current amplitude. The obtained data indicate the existence of D1- and D2-receptors on the membrane of multipolar spinal neurons of the amniocoete larva of the brook lamprey. Study of action of antagonists has shown that the antagonist of D1-receptors (+)-SCH-23390 (10 microM) does not affect action of the agonist of D1-receptors (-)-SKF-38393 (10 microM); the antagonist of D2-receptors (-)-sulpiride (10 microM) blocks completely effects both of the agonist of D1-receptors (-)-SKF-38393 (10 microM) and of the agonist of D2-receptors (-)-quinpirole (10 microM). The antagonist of D1-receptors (+)-SCH-23390 (10 microM) produced no effect on action of the agonist of D1-receptors (-)-SKF-38393 (10 microM). The obtained data indicate peculiarities of dopamine receptors of Cyclostomata as compared with those in mammals.  相似文献   

7.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

8.
Previously a distinct D1-like dopamine receptor (DAR) that selectively couples to phospholipase C/phosphatidylinositol (PLC/PI) was proposed. However, lack of a selective agonist has limited efforts aimed at characterizing this receptor. We characterized the in vitro and in vivo effects of SKF83959 in regulating PI metabolism. SKF83959 stimulates (EC50, 8 micro m) phosphatidylinositol 4,5-biphosphate hydrolysis in membranes of frontal cortex (FC) but not in membranes from PC12 cells expressing classical D1A DARs. Stimulation of FC PI metabolism was attenuated by the D1 antagonist, SCH23390, indicating that SKF83959 activates a D1-like DAR. The PI-linked DAR is located in hippocampus, cerebellum, striatum and FC. Most significantly, administration of SKF83959 induced accumulations of IP3 in striatum and hippocampus. In contrast to other D1 DAR agonists, SKF83959 did not increase cAMP production in brain or in D1A DAR-expressing PC12 cell membranes. However, SKF83959 inhibited cAMP elevation elicited by the D1A DAR agonist, SKF81297, indicating that the compound is an antagonist of the classical D1A DAR. Lastly, we demonstrated that SKF83959 enhances [35S]guanosine 5'-O-(3-thiotriphosphate) binding to membrane Galphaq and Galphai proteins, suggesting that PI stimulation is mediated by activation of these guanine nucleotide-binding regulatory proteins. Results indicate that SKF83959 is a selective agonist for the PI-linked D1-like DAR, providing a unique tool for investigating the functions of this brain D1 DAR subtype.  相似文献   

9.
Synthesis of (+/-)-cis-7-hydroxy-3-phenyl-4-(4-(2-piperidinoethanethio)phenyl)chromane (13) and (+/-)-cis-7-hydroxy-3-phenyl-4-(4-(2-pyrrolidinoethanethio)phenyl)chromane (15) is presented. These compounds are representatives of a novel class of compounds with high in vitro binding affinity for the estrogen receptor (IC(50)=7-10 nM), and very low in vitro uterotrophic activity (max stim.=5-17% rel to moxestrol; EC(50)=0.5-1.8 nM).  相似文献   

10.
A series of 1-phenyl-2-cyclopropylmethylamines structurally related to (+)- and (-)-MPCB were synthesized and their binding affinities for sigma1, sigma2, opioid and dopamine (D2) receptors were evaluated. Substitution of the cis-N-normetazocine with different aminic moieties provided compounds with high affinity and selectivity for sigma binding sites with respect to opioid and dopamine (D2) receptors. The observed increase in sigma2 affinity as compared to the parent (+)-MPCB, supports the idea that the particular stereochemistry of (+)-cis-N-normetazocine affects sigma1 selectivity but does not affect sigma1 affinity. The (+/-)-cis isomers of methyl 2-[(1-adamantylamino)methyl]-1-phenylcyclopropane-1-carboxyl ate (18) displayed a higher affinity and selectivity for the sigma1 and sigma2 receptor subtypes compared to the (+/-)-trans 19. Interestingly, the enantiomer (-)-cis 18 displayed a preference for sigma1 receptor subtype whereas the (+)-cis 18 did for sigma2. These results prompt us to synthesize compounds with modification of nitrogen and carboxyl groups. The compounds obtained showed high affinities and selectivity for sigma sites. Moreover, modifications of carboxyl groups provided compounds with the highest affinities in the series. In particular, compound 25 with reverse-type ester showed a Ki of 0.6 and 4.05 nM for sigma1 and sigma2 binding sites, respectively.  相似文献   

11.
In a recent preliminary communication we described the development of a series of hybrid molecules for the dopamine D2 and D3 receptor subtypes. The design of these compounds was based on combining pharmacophoric elements of aminotetralin and piperazine molecular fragments derived from known dopamine receptor agonist and antagonist molecules. Molecules developed from this approach exhibited high affinity and selectivity for the D3 receptor as judged from preliminary [(3)H]spiperone binding data. In this report, we have expanded our previous finding by developing additional novel molecules and additionally evaluated functional activities of these novel molecules in the [(3)H]thymidine incorporation mitogenesis assay. The binding results indicated highest selectivity in the bioisosteric benzothiazole derivative N6-[2-(4-phenyl-piperazin-1-yl)-ethyl]-N6-propyl-4,5,6,7-tetrahydro-benzothiazole-2,6-diamine (14) for the D3 receptor whereas the racemic compound 7-([2-[4-(2,3-dichloro-phenyl)-piperazin-1-yl]-ethyl]-propyl-amino)-5,6,7,8-tetrahydro-naphthalen-2-ol (10c) showed the strongest potency. Mitogenesis studies to evaluate functional activity demonstrated potent agonist properties in these novel derivatives for both D2 and D3 receptors. In this regard, compound 7-[[4-(4-phenyl-piperazin-1-yl)-butyl]-prop-2-ynyl-amino]-5,6,7,8-tetrahydro-naphthalen-2-ol (7b) exhibited the most potent agonist activity at the D3 receptor, 10 times more potent than quinpirole and was also the most selective compound for the D3 receptor in this series. Racemic compound 10a was resolved; however, little separation of activity was found between the two enantiomers of 10a. The marginally more active enantiomer (-)-10a was examined in vivo using the 6-OH-DA induced unilaterally lesioned rat model to evaluate its activity in producing contralateral rotations. The results demonstrated that in comparison to the reference compound apomorphine, (-)-10a was quite potent in inducing contralateral rotations and exhibited longer duration of action.  相似文献   

12.
SKF38393抑制大鼠DRG分离神经元GABA-激活电流   总被引:7,自引:2,他引:5  
Li Q  Wang QW  Li ZW 《生理学报》1998,50(3):280-288
在大鼠新鲜分离DRG神经元标本上应用全细胞膜片箝记录,观察了多巴胺D1受体的选择性激动剂SKF38393HCI对GABA-激活电流的作用。大部分受检细胞对GABA敏感,10^-6-10^-3-mol/L GABA可于引起呈剂量依赖性的明显去敏感作用的内向电流。  相似文献   

13.
Extracellular signal-regulated kinase 1/2 (ERK1/2) is a member of the mitogen-activated protein kinase family. It can mediate cell migration. Classical dopamine receptor-mediated ERK1/2 phosphorylation is widely studied in neurons. Here, we report that ERK1/2 phosphorylation is also modulated by putative phosphatidylinositol-linked D1-like receptors in cultured rat astrocytes. 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), an agonist of the putative phosphatidylinositol-linked D1-like receptors, was found to enhance ERK1/2 phosphorylation, which then promoted the migration of cultured astrocytes. The SKF83959-induced ERK1/2 phosphorylation was found to be Ca2+-independent based on the following observations: i. chelating intracellular Ca2+ did not inhibit ERK1/2 phosphorylation and astrocyte migration; ii. blockage of the release of intracellular Ca2+ from the endoplasmic reticulum by an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor did not attenuate ERK1/2 phosphorylation. However, inhibition of phospholipase C (PLC), the upstream molecule of internal Ca2+ release, disabled SKF83959’s ability to elevate the level of ERK1/2 phosphorylation. Both non-selective protein kinase C (PKC) inhibitor and PKCδ selective inhibitor prevented ERK1/2 phosphorylation increase and astrocyte migration, but PKCα inhibitor did not. This suggests that Ca2+-independent and diacylglycerol-dependent PKCδ acts downstream of putative phosphatidylinositol-linked D1-like receptor activation and mediates SKF83959-induced elevation of ERK1/2 phosphorylation in order to modulate astrocyte migration. In conclusion, our results demonstrate that SKF83959-induced increases in ERK1/2 phosphorylation and astrocyte migration are dependent on PLC-PKCδ signals. This might help us to further understand the functions of the putative phosphatidylinositol-linked D1-like receptors in the nervous system.  相似文献   

14.
The aim of the present study was to explore the mood effects of D1 receptor agonist, SKF-38393 and D1 receptor antagonist, SCH-23390 alone or in combination with a low dose of 17β-estradiol (17β-E2) in the adult ovariectomized female rats (OVX). OVX rats of Wistar strain were used in all experiments. Two weeks after surgery rats were chronically treated with vehicle, a low dose of 17β-E2 (5.0 μg/rat), SKF-38393 (0.1 mg/kg), SCH-23390 (0.1 mg/kg), SKF-38393 plus 17β-E2 or SCH-23390 plus 17β-E2 for 14 days before the forced swimming test. We found that SCH-23390 significantly decreased immobility time in the OVX females. A combination of SCH-23390 with a low dose of 17β-E2 induced more profound decrease of immobility time in the OVX rats compared to the rats treated with SCH-23390 alone. On the contrary, SKF-38393 failed to modify depression-like behavior in the OVX rats. In addition, SKF-38393 significantly blocked the antidepressant-like effect of 17β-E2 in OVX rats. Thus, the D1 receptor antagonist SCH-23390 alone or in combination with a low dose of 17β-E2 exerted antidepressant-like effect in OVX female rats, while the D1 receptor agonist SKF-38393 produced depressant-like profile on OVX rats.  相似文献   

15.
Seven fluorine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives were synthesized based on a lead ligand, 3-[[4-(4-iodophenyl)piperazin-1-yl]-methyl]-1H-pyrrolo[2,3-b]pyridine (L-750,667) and evaluated as potential dopamine D(4) receptor imaging agents by positron emission tomography (PET). Binding affinities of these ligands for the dopamine D(2), D(3), and D(4) receptor subtypes were measured in vitro. Most ligands showed high and selective binding for the D(4) receptor. Ligand 7 had high affinity for the D(4) receptor, whereas ligands 1, 2, and 6 showed high selectivity for the D(4) receptor. LogP values were calculated for the ligands in this series and ligand 6 had the lowest lipophilicity. (18)F-labeled ligand 7 demonstrated a uniform regional brain distribution and a rapid washout in mice, probably due to nonspecific binding. Based on their in vitro binding properties and calculated logP values, ligand 6 appears to have the most promise for dopamine D(4) receptor imaging.  相似文献   

16.
Synthesis and structure elucidation of new series of novel fused 1,2,4-triazine derivatives 3a-3f, 4a-4i and 6a-6b and their inhibitory activities are presented. Molecular structures of the synthesized compounds were confirmed by (1)H NMR, (13)C NMR, MS spectra and elemental analyses. X-ray crystallographic analysis was performed on 2-acetyl-8-(N,N-diacetylamino)-6-(4-methoxybenzyl)-3-(4-methoxy-phenyl)-7-oxo-2,3-dihydro-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazine 3d and 2-acetyl-8-(N-acetylamino)-6-benzyl-3-(4-chlorophenyl)-3-methyl-7-oxo-2,3-dihydro-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazine 4e to secure their structures. The inhibitory effect of these compounds toward the CPY1A1 activity was screened to determine their potential as promising anticancer drugs. Our data showed that compounds 4e, 5a, 5b and 6b possess the highest inhibitory effects among all tested compounds. Furthermore, analysis of triazolotriazine derivatives docking showed that these compounds bind only at the interface of substrate recognition site 2 (SRS2) and (SRS6) at the outer surface of the protein. Amino-acids ASN214, SER216 and ILE462 participate in the binding of these compounds through H-bonds.  相似文献   

17.
A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D(?-like) dopamine receptors. These compounds also share structural elements with the classical D(?-like) dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D? receptor subtype with high affinity (K(i) values < 0.3 nM), (b) exhibit >50-fold D? versus D? receptor binding selectivity and (c) be partial agonists at both the D? and D? receptor subtype.  相似文献   

18.
J K Addo  N Swamy  R Ray 《Steroids》1999,64(4):273-282
In this article, we describe the development of a general synthetic strategy to functionalize the C-6 position of vitamin D3 and its biologically important metabolites, i.e. 25-hydroxyvitamin D3 (25-OH-D3) and 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We employed Mazur's cyclovitamin D method to synthesize vitamin D3 analogs with several functionalities at the C-6 position. In addition, we synthesized 6-(3-hydroxypropyl) and 6-[(2-bromoacetoxy)propyl] derivatives of 25-OH-D3 15 and 16, respectively, and 6-(3-hydroxypropyl) derivative of 1,25(OH)2D3 17. Competitive binding assays of 15-17 with human serum vitamin D-binding protein showed that all these analogs specifically bound to this protein, although with significantly lower affinity than the 25-OH-D3, the strongest natural binder, but with comparable affinity with 1,25(OH)2D3, the hormone. On the other hand, 6-[3-hydroxypropyl], 1alpha,25-dihydroxyvitamin D3 17 did not show any specific binding for recombinant nuclear vitamin D receptor. These results indicated that the region containing the C-6 position of the parent seco-steroid [1,25(OH)2D3] may be an important recognition marker towards vitamin D receptor binding. Information, delineated in this article, will be important for evaluating structure-activity relationship in synthetic analogs of vitamin D and its metabolites.  相似文献   

19.
Recent evidence indicates the existence of a putative novel phosphatidylinositol-linked D1 dopamine receptor in brain that mediates phosphatidylinositol hydrolysis via activation of phospholipase Cbeta. The present work was designed to characterize the Ca(2+) signals regulated by this phosphatidylinositol-linked D(1) dopamine receptor in primary cultures of hippocampal neurons. The results indicated that stimulation of phosphatidylinositol-linked D1 dopamine receptor by its newly identified selective agonist SKF83959 induced a long-lasting increase in basal [Ca(2+)](i) in a time- and dose-dependent manner. Stimulation was observable at 0.1 microm and reached the maximal effect at 30 microm. The [Ca(2+)](i) increase induced by 1 microm SKF83959 reached a plateau in 5 +/- 2.13 min, an average 96 +/- 5.6% increase over control. The sustained elevation of [Ca(2+)](i) was due to both intracellular calcium release and calcium influx. The initial component of Ca(2+) increase through release from intracellular stores was necessary for triggering the late component of Ca(2+) rise through influx. We further demonstrated that activation of phospholipase Cbeta/inositol triphosphate was responsible for SKF83959-induced Ca(2+) release from intracellular stores. Moreover, inhibition of voltage-operated calcium channel or NMDA receptor-gated calcium channel strongly attenuated SKF83959-induced Ca(2+) influx, indicating that both voltage-operated calcium channel and NMDA receptor contribute to phosphatidylinositol-linked D(1) receptor regulation of [Ca(2+)](i).  相似文献   

20.
Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号