首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.  相似文献   

5.
Limitations of silencing at native yeast telomeres   总被引:12,自引:0,他引:12       下载免费PDF全文
Pryde FE  Louis EJ 《The EMBO journal》1999,18(9):2538-2550
Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p-binding site significantly reduces silencing. The subtelomeric Y' elements are resistant to silencing along their whole length, yet silencing can be re-established at the proximal X element. Deletion of PPR1, the transactivator of URA3, and SIR3 overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends. sir1Delta causes partial derepression at X-ACS, in contrast to the lack of effect seen at terminal truncations. orc2-1 and orc5-1 have no effect on natural silencing yet cause derepression at truncated ends. X-ACS silencing requires the proximity of the telomere and is dependent on SIR2, SIR3, SIR4 and HDF1. The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.  相似文献   

6.
7.
8.
9.
10.
11.
12.
A general feature of the nucleus is the organization of repetitive deoxyribonucleic acid sequences in clusters concentrating silencing factors. In budding yeast, we investigated how telomeres cluster in perinuclear foci associated with the silencing complex Sir2-Sir3-Sir4 and found that Sir3 is limiting for telomere clustering. Sir3 overexpression triggers the grouping of telomeric foci into larger foci that relocalize to the nuclear interior and correlate with more stable silencing in subtelomeric regions. Furthermore, we show that Sir3's ability to mediate telomere clustering can be separated from its role in silencing. Indeed, nonacetylable Sir3, which is unable to spread into subtelomeric regions, can mediate telomere clustering independently of Sir2-Sir4 as long as it is targeted to telomeres by the Rap1 protein. Thus, arrays of Sir3 binding sites at telomeres appeared as the sole requirement to promote trans-interactions between telomeres. We propose that similar mechanisms involving proteins able to oligomerize account for long-range interactions that impact genomic functions in many organisms.  相似文献   

13.
14.
Abstract Meiosis is central to the formation of haploid gametes or spores in that it segregates homologous chromosomes and halves the chromosome number. A prerequisite of this genome bisection is the pairing of homologous chromosomes during the first meiotic prophase. When budding yeast cells are induced to undergo meiosis, this has profound consequences for nuclear structure: after premeiotic DNA replication centromeres disperse, while telomeres move about the nuclear periphery and temporarily cluster during the leptotene/zygotene transition (bouquet stage) of the prophase to first meiotic division. In vegetative cells, Hdf1p (yKu) and the myosin-like proteins Mlp1p and Mlp2p have been suggested to contribute to the organization of silent chromatin, tethering of telomeres to the nuclear periphery, DNA repair, and telomere maintenance. Here, we investigated by molecular cytology whether yKu and Mlp proteins contribute to telomere and chromosome dynamics in meiosis. It was found that mlp1 Δ mlp2 Δ double-mutant cells undergo centromere dispersion, telomere clustering, homologue pairing, and sporulation like wild type. On the other hand, cells deficient for yKu underwent meiosis-specific chromosomal events with a delay, while they eventually sporulated like wild type. These results suggest that the absence of yKu not only affects vegetative nuclear architecture ( Laroche et al., 1998 ) but also interferes with the ordered occurrence of chromosome dynamics during first meiotic prophase.  相似文献   

15.
In budding yeast, the telomeric DNA is flanked by a combination of two subtelomeric repetitive sequences, the X and Y' elements. We have investigated the influence of these sequences on telomeric silencing. The telomere-proximal portion of either X or Y' dampened silencing when located between the telomere and the reporter gene. These elements were named STARs, for subtelomeric anti-silencing regions. STARs can also counteract silencer-driven repression at the mating-type HML locus. When two STARs bracket a reporter gene, its expression is no longer influenced by surrounding silencing elements, although these are still active on a second reporter gene. In addition, an intervening STAR uncouples the silencing of neighboring genes. STARs thus display the hallmarks of insulators. Protection from silencing is recapitulated by multimerized oligonucleotides representing Tbf1p- and Reb1p-binding sites, as found in STARs. In contrast, sequences located more centromere proximal in X and Y' elements reinforce silencing. They can promote silencing downstream of an insulated expressed domain. Overall, our results suggest that the silencing emanating from telomeres can be propagated in a discontinuous manner via a series of subtelomeric relay elements.  相似文献   

16.
17.
18.
《The Journal of cell biology》1996,134(6):1349-1363
We have developed a novel technique for combined immunofluorescence/in situ hybridization on fixed budding yeast cells that maintains the three-dimensional structure of the nucleus as monitored by focal sections of cells labeled with fluorescent probes and by staining with a nuclear pore antibody. Within the resolution of these immunodetection techniques, we show that proteins encoded by the SIR3, SIR4, and RAP1 genes colocalize in a statistically significant manner with Y' telomere- associated DNA sequences. In wild-type cells the Y' in situ hybridization signals can be resolved by light microscopy into fewer than ten foci per diploid nucleus. This suggests that telomeres are clustered in vegetatively growing cells, and that proteins essential for telomeric silencing are concentrated at their sites of action, i.e., at telomeres and/or subtelomeric regions. As observed for Rap1, the Sir4p staining is diffuse in a sir3- strain, and similarly, Sir3p staining is no longer punctate in a sir4- strain, although the derivatized Y' probe continues to label discrete sites in these strains. Nonetheless, the Y' FISH is altered in a qualitative manner in sir3 and sir4 mutant strains, consistent with the previously reported phenotypes of shortened telomeric repeats and loss of telomeric silencing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号