首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hutchinson-Gilford progeria syndrome (HGPS or progeria) is an apparent accelerated aging disorder of childhood. Recently, HGPS has been characterized as one of a growing group of disorders known as laminopathies, which result from genetic defects of the lamin A/C (LMNA) gene. The majority of HGPS mutant alleles involve a silent mutation, c.2063C>T resulting in G608G, that generates a cryptic splicing site in exon 11 of LMNA and consequently truncates 50 amino acids near the C-terminus of pre-lamin A/C. To explore possible mechanisms underlying the development of HGPS, we began a search for proteins that would uniquely interact with progerin (the truncated lamin A in HGPS) using a yeast two-hybrid system. Four new progerin interactive partner proteins were identified that had not been previously found to interact with lamin A/C: hnRNP E1, UBC9 (ubiquitin conjugating enzyme E2I), Mel-18, and EGF1. However, using control and progeria fibroblasts, co-immunoprecipitation studies of endogenous proteins did not show differential binding affinity compared to normal lamin A/C. Thus, we did not find evidence for uniquely interacting partner proteins using this approach, but did identify four new lamin A/C interactive partners.  相似文献   

2.
Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.  相似文献   

3.
4.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

5.
6.
Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.  相似文献   

7.
8.
Mandibuloacral dysplasia type A (MADA; OMIM # 248370) is a premature ageing disease caused by the homozygous R527H mutation in the LMNA gene. At the cellular level, MADA is characterized by unprocessed prelamin A accumulation, nuclear architecture alterations, chromatin defects and increased incidence of apoptosis. In some progeroid laminopathies (e.g. HGPS) it has been demonstrated that such biochemical and morphological alterations are strongly linked with genomic instability. To test this also in MADA fibroblasts, their response to the ionising radiation- induced damage was analysed. We observed that their ability to repair the damage was significantly impaired, as demonstrated by the increased chromosome damage and the higher percentage of residual γ-H2AX foci, corresponding to unrepaired DNA-damage sites. Moreover, MADA fibroblasts showed a markedly reduced phosphorylation of p53 at Ser15(S15) and a lower induction of p53 and CDKN1A proteins after irradiation, compared to the control cell line. Upon irradiation, we also detected differences in the expression of some p53 downstream target genes. In addition, MADA cells showed partial defects in the checkpoint response, particularly in G1/S transition. Our results indicate that accumulation of the lamin A precursor protein determines a defect in DNA damage response after X-ray exposure, supporting a crucial role of lamin A in regulating DNA repair process and cell cycle control.  相似文献   

9.
10.
11.
Lamins belong to type V intermediate filaments superfamily. They are the main structural constituencies of the nuclear lamina but they also influence on chromatin structure, regulation of gene expression, localization and probably protein degradation. Because lamins play many different roles within the cell, mutations in their genes can results in variety of pathological phenotypes. Mutations in LMNA gene are the cause of many different diseases, called laminopathies. Among laminopathies are muscle tissue diseases, adipose tissue diseases and also progerias, the premature aging syndromes. One of the progerias, which results from mutation in LMNA gene, is Hutchinson-Gilford progeria syndrome (HGPS). It seems that the same molecular mechanisms which are responsible for premature aging of cells of HGPS patients, are involved in physiological aging.  相似文献   

12.
Human ING1 proteins differentially regulate histone acetylation   总被引:19,自引:0,他引:19  
ING1 proteins are nuclear, growth inhibitory, and regulate apoptosis in different experimental systems. Here we show that similar to their yeast homologs, human ING1 proteins interact with proteins associated with histone acetyltransferase (HAT) activity, such as TRRAP, PCAF, CBP, and p300. Human ING1 immunocomplexes contain HAT activity, and overexpression of p33(ING1b), but not of p47(ING1a), induces hyperacetylation of histones H3 and H4, in vitro and in vivo at the single cell level. p47(ING1a) inhibits histone acetylation in vitro and in vivo and binds the histone deacetylase HDAC1. Finally, we present evidence indicating that p33(ING1b) affects the degree of physical association between proliferating cell nuclear antigen (PCNA) and p300, an association that has been proposed to link DNA repair to chromatin remodeling. Together with the finding that human ING1 proteins bind PCNA in a DNA damage-dependent manner, these data suggest that ING1 proteins provide a direct linkage between DNA repair, apoptosis, and chromatin remodeling via multiple HAT.ING1.PCNA protein complexes.  相似文献   

13.
Lu D  Lian H  Zhang X  Shao H  Huang L  Qin C  Zhang L 《PloS one》2010,5(12):e15167
The lamin A/C (LMNA), nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K) transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP), procollagen type III α1 (Col3α1) and skeletal muscle actin α1 (Actα1) were detected in the hearts of Lmna(E82K) transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K) transgenic mice than that of non-transgenic (NTG) mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.  相似文献   

14.
Human LMNA gene mutations result in laminopathies that include Emery-Dreifuss muscular dystrophy (AD-EDMD) and Hutchinson-Gilford progeria, the premature aging syndrome (HGPS). The Lmna null (Lmna(-/-)) and progeroid LmnaΔ9 mutant mice are models for AD-EDMD and HGPS, respectively. Both animals develop severe tissue pathologies with abbreviated life spans. Like HGPS cells, Lmna(-/-) and LmnaΔ9 fibroblasts have typically misshapen nuclei. Unexpectedly, Lmna(-/-) or LmnaΔ9 mice that are also deficient for the inner nuclear membrane protein Sun1 show markedly reduced tissue pathologies and enhanced longevity. Concordantly, reduction of SUN1 overaccumulation in LMNA mutant fibroblasts and in cells derived from HGPS patients corrected nuclear defects and cellular senescence. Collectively, these findings implicate Sun1 protein accumulation as a common pathogenic event in Lmna(-/-), LmnaΔ9, and HGPS disorders.  相似文献   

15.
衰老是一种生理完整性丧失,功能受损,疾病和死亡风险增加的过程。早老症(HGPS)是一种加速化的衰老疾病,是研究人类正常衰老理想的疾病模型。由LMNA基因突变产生prelamin AΔ50在细胞内累积是造成早老症的主要原因,早老症病人表现出寿命急剧缩短,老化特征明显的现象,例如脱发、皮下脂肪减少、骨质疏松以及早逝。 锌金属蛋白酶Zmpste24 是prelamin A加工成为成熟lamin A蛋白的关键酶。敲除Zmpste24基因的小鼠表现出与早老症高度一致的衰老表型,同时也存在非常相似的发病机制,如染色质异常、DNA损伤和干细胞功能缺失等。Zmpste24缺失小鼠作为典型的早老模型小鼠因其衰老周期短,衰老特征明显而获得广泛应用。本文总结了以Zmpste24缺失早老小鼠为模型取得的早老相关分子机制的研究进展,以及抗衰老策略的最新发现。  相似文献   

16.
17.
早老症(Hutchinson-Gilford Progeria Syndrome,HGPS)是一种早发而严重的过早老化性疾病.它是由于编码A/C型核纤层蛋白的LMNA基因发生点突变而引起.这个突变激活了基因11号外显子上一个隐蔽的剪接位点,产生了一种被截短了50个氨基酸的A型核纤层蛋白.然而,一个广泛分布于核膜上结构蛋白的突变,如何引起HGPS患者的早老表现,目前还不太清楚.最近研究发现,HGPS患者的细胞核结构与功能发生了各种异常,主要表现在:progerin蓄积与核变形、细胞核机械性质的改变、组蛋白修饰方式与外遗传控制的改变、基因表达调控异常、p53信号传导通路激活和基因组不稳定等方面.目前存在机械应激假说和基因表达失控假说两种假说解释HGPS的发病机制.对于HGPS患者,尚无有效的临床干预措施,但有学者提出了一些治疗策略,如应用法尼基化的抑制剂、反义寡核苷酸和RNA干扰方法.HGPS被认为是研究正常衰老机制的一个模型.对HGPS深入研究将有助于阐明A型核纤层蛋白和核膜的正常生理功能,及其在生理衰老和疾病中的作用.  相似文献   

18.
LMNA基因编码A型和C型核纤层蛋白,参与细胞核核膜的组织,影响基因组稳定性并对细胞分化产生影响。人类肿瘤中LMNA表达异常普遍存在,其突变造成多种核纤层蛋白病,如Emery-Dreifuss肌营养不良症(Emery-Dreifussmusculardystrophy,EDMD)、扩张型心肌病(dilatedcardiomyopathy,DCM)和儿童早老症(Hutchinson-Glifordprogeriasyndrome,HGPS)等。为进一步研究LMNA在细胞内的功能,本研究利用CRISPR/Cas9技术对体外培养的293T与HepG2细胞株的LMNA基因进行编辑,获得两株LMNA基因敲除(LMNA KO)的稳定细胞系。与野生型相比,LMNAKO细胞系增殖能力相对减弱,凋亡增加。同时,细胞形态上也发生显著改变,核膜凹凸不平。本研究首次报道了LMNA KO永生细胞系构建和形态研究结果,为后续LMNA基因功能研究和致病突变体研究奠定基础。  相似文献   

19.
Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.  相似文献   

20.
The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin. A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis. Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号