首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.  相似文献   

2.
In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by six genes, and they display varying affinities for acyl-CoA esters. Recombinant ACBP4 and ACBP5 have been shown to bind oleoyl-CoA esters in vitro. In this study, the subcellular localizations of ACBP4 and ACBP5 were determined by biochemical fractionation followed by western blot analyses using anti-ACBP4 and anti-ACBP5 antibodies and immuno-electron microscopy. Confocal microscopy of autofluorescence-tagged ACBP4 and ACBP5, expressed transiently in onion epidermal cells and in transgenic Arabidopsis, confirmed their expression in the cytosol. Taken together, ACBP4 and ACBP5 are available in the cytosol to bind and transfer cytosolic oleoyl-CoA esters. Lipid profile analysis further revealed that an acbp4 knockout mutant showed decreases in membrane lipids (digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol) while acbp4-complemented lines attained levels similar to wild type, suggesting that ACBP4 plays a role in the biosynthesis of membrane lipids including galactolipids and phospholipids.  相似文献   

3.
4.
In Arabidopsis thaliana, acyl-CoA-binding protein 3 (?ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.  相似文献   

5.
6.
In Arabidopsis thaliana , a family of six genes encodes acyl-CoA-binding proteins (ACBPs) that show conservation at the acyl-CoA-binding domain. They are the membrane-associated ACBP1 and ACBP2, extracellularly targeted ACBP3, kelch-motif-containing ACBP4 and ACBP5, and 10-kDa ACBP6. The acyl-CoA domain in each of ACBP1 to ACBP6 binds long-chain acyl-CoA esters in vitro , suggestive of possible roles in plant lipid metabolism. We addressed here the use of Arabidopsis ACBPs in conferring lead [Pb(II)] tolerance in transgenic plants because the 10-kDa human ACBP has been identified as a molecular target for Pb(II) in vivo . We investigated the effect of Pb(II) stress on the expression of genes encoding Arabidopsis ACBP1, ACBP2 and ACBP6. We showed that the expression of ACBP1 and ACBP2 , but not ACBP6 , in root is induced by Pb(II) nitrate treatment. In vitro Pb(II)-binding assays indicated that ACBP1 binds Pb(II) comparatively better, and ACBP1 was therefore selected for further investigations. When grown on Pb(II)-containing medium, transgenic Arabidopsis lines overexpressing ACBP1 were more tolerant to Pb(II)-induced stress than the wild type. Accumulation of Pb(II) in shoots of the ACBP1 -overepxressing plants was significantly higher than wild type. The acbp1 mutant showed enhanced sensitivity to Pb(II) when germinated and grown in the presence of Pb(II) nitrate and tolerance was restored upon complementation using an ACBP1 cDNA. Our results suggest that ACBP1 is involved in mediating Pb(II) tolerance in Arabidopsis with accumulation of Pb(II) in shoots. Such observations of Pb(II) accumulation, rather than Pb(II) extrusion, in the ACBP1 -overexpressing plants implicate possible use of ACBP1 in Pb(II) phytoremediation.  相似文献   

7.
In our recent paper in Plant Physiology, we showed that the Arabidopsis thaliana 10-kD acyl-CoA-binding protein, ACBP6, is subcellularly localized to the cytosol and that the overexpression of ACBP6 in transgenic Arabidopsis enhanced freezing tolerance. ACBP6-conferred freezing tolerance was independent of induced cold-regulated (COLD-RESPONSIVE) gene expression, but was correlated to an enhanced expression of phospholipase Dδ (PLDδ). Lipid analyses on cold-acclimated freezing-treated ACBP6-overexpressors revealed a decline in phosphatidylcholine (PC) and an elevation of phosphatidic acid (PA) in comparison to wild type. Furthermore, the His-tagged ACBP6 recombinant protein was observed using in vitro filter-binding assays to bind PC, but not PA or lysophosphatidylcholine. Taken together, our results implicate roles for ACBP6 in phospholipid metabolism that is related to gene regulation and PC-binding/transfer. This represents the first report demonstrating the in vitro binding of an ACBP to a phospholipid. The effect of ACBP6 on PLDδ expression is reminiscent of yeast 10-kD ACBP function in the regulation of genes associated with stress responses, fatty acid synthesis and phospholipid synthesis. However, the yeast ACBP regulates the expression of genes involved in phospholipid synthesis by donation of acyl-CoA esters and its binding to phospholipids remains to be demonstrated.Key words: acyl-CoA-binding protein, freezing tolerance, phosphatidylcholine-binding, phospholipid transfer  相似文献   

8.
BACKGROUND AND AIMS: It has previously been shown that Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) contributed to resistance to abiotic stresses. Interestingly, it has also been reported that expression of ethylene-responsive factor (ERF) genes including AtEBP were regulated by the activity of APETALA2 (AP2), a floral homeotic factor. AP2 is known to regulate expression of several floral-specific homeotic genes such as AGAMOUS. The aim of this study was to clarify the relationship between AP2 and AtEBP in gene expression. METHODS: Northern blot analysis was performed on ap2 mutants, ethylene-related Arabidopsis mutants and transgenic Arabidopsis plants over-expressing AtEBP, and a T-DNA insertional mutant of AtEBP. Phenotypic analysis of these plants was performed. KEY RESULTS: Expression levels of ERF genes such as AtEBP and AtERF1 were increased in ap2 mutants. Over-expression of AtEBP caused upregulation of AP2 expression in leaves. AP2 expression was suppressed by the null-function of ethylene-insensitive2 (EIN2), although AP2 expression was not affected by ethylene treatment. Loss of AtEBP function slightly reduced the average number of stamens. CONCLUSIONS: AP2 and AtEBP are mutually regulated in terms of gene expression. AP2 expression was affected by EIN2 but was not regulated by ethylene treatment.  相似文献   

9.
Chen QF  Xiao S  Chye ML 《Plant physiology》2008,148(1):304-315
Small 10-kD acyl-coenzyme A-binding proteins (ACBPs) are highly conserved proteins that are prevalent in eukaryotes. In Arabidopsis (Arabidopsis thaliana), other than the 10-kD ACBP homolog (designated Arabidopsis ACBP6), there are five larger forms of ACBPs ranging from 37.5 to 73.1 kD. In this study, the cytosolic subcellular localization of Arabidopsis ACBP6 was confirmed by analyses of transgenic Arabidopsis expressing autofluorescence-tagged ACBP6 and western-blot analysis of subcellular fractions using ACBP6-specific antibodies. The expression of Arabidopsis ACBP6 was noticeably induced at 48 h after 4 degrees C treatment by northern-blot analysis and western-blot analysis. Furthermore, an acbp6 T-DNA insertional mutant that lacked ACBP6 mRNA and protein displayed increased sensitivity to freezing temperature (-8 degrees C), while ACBP6-overexpressing transgenic Arabidopsis plants were conferred enhanced freezing tolerance. Northern-blot analysis indicated that ACBP6-associated freezing tolerance was not dependent on the induction of cold-regulated COLD-RESPONSIVE gene expression. Instead, ACBP6 overexpressors showed increased expression of mRNA encoding phospholipase Ddelta. Lipid profiling analyses of rosettes from cold-acclimated, freezing-treated (-8 degrees C) transgenic Arabidopsis plants overexpressing ACBP6 showed a decline in phosphatidylcholine (-36% and -46%) and an elevation of phosphatidic acid (73% and 67%) in comparison with wild-type plants. From our comparison, the gain in freezing tolerance in ACBP6 overexpressors that was accompanied by decreases in phosphatidylcholine and an accumulation of phosphatidic acid is consistent with previous findings on phospholipase Ddelta-overexpressing transgenic Arabidopsis. In vitro filter-binding assays indicating that histidine-tagged ACBP6 binds phosphatidylcholine, but not phosphatidic acid or lysophosphatidylcholine, further imply a role for ACBP6 in phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine.  相似文献   

10.
11.
In our recent paper in Plant Physiology and Biochemistry, we reported that the mRNAs encoding Arabidopsis thaliana cytosolic acyl-CoA-binding proteins, ACBP4 and ACBP5, but not ACBP6, are modulated by light/dark cycling. The pattern of circadian-regulated expression in ACBP4 and ACBP5 mRNAs resembles that of FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial fatty acid biosynthesis. Recombinant ACBP4 and ACBP5 proteins were observed to bind oleoyl-CoA ester comparably better than recombinant ACBP6, suggesting that ACBP4 and ACBP5 are promising candidates in the trafficking of oleoyl-CoA from the plastids to the endoplasmic reticulum (ER) for the biosynthesis of non-plastidial membrane lipids. By western blot analyses using the ACBP4 and ACBP5-specific antibodies, we show herein that the levels of ACBP4 and ACBP5 proteins peak at the end of the light period, further demonstrating that they, like their corresponding mRNAs, are tightly controlled by light to satisfy demands of lipids in plant cells.Key words: acyl-CoA-binding protein, ACBP4, ACBP5, lipid trafficking, phosphatidylcholine-binding  相似文献   

12.
13.
Acyl-CoA binding proteins (ACBPs) are small (ca. 10 kDa) highly-conserved cytosolic proteins that bind long-chain acyl-CoAs. A novel cDNA encoding ACBP1, a predicted membrane protein of 24.1 kDa with an acyl-CoA binding protein domain at its carboxy terminus, was cloned from Arabidopsis thaliana. At this domain, ACBP1 showed 47% amino acid identity to Brassica ACBP and 35% to 40% amino acid identity to yeast, Drosophila, bovine and human ACBPs. Recombinant (His)6-ACBP1 fusion protein was expressed in Escherichia coli and was shown to bind 14[C]oleoyl-CoA. A hydrophobic domain, absent in the 10 kDa ACBPs, was located at the amino terminus of ACBP1. Using antipeptide polyclonal antibodies in western blot analysis, ACBP1 was shown to be a membrane-associated glycosylated protein with an apparent molecular mass of 33 kDa. The ACBP1 protein was also shown to accumulate predominantly in siliques and was localized to the seed within the silique. These results suggest that the biological role of ACBP1 is related to lipid metabolism in the seed, presumably in which acyl-CoA esters are involved. Northern blot analysis showed that the 1.4 kb ACBP1 mRNA was expressed in silique, root, stem, leaf and flower. Results from Southern blot analysis of genomic DNA suggest the presence of at least two genes encoding ACBPs in Arabidopsis.  相似文献   

14.
In our recent paper in the Plant Journal, we demonstrated that Arabidopsis thaliana acyl-CoA-binding protein ACBP1 binds lead [Pb(II)], its mRNA is induced by Pb(II)-treatment and transgenic Arabidopsis overexpressing ACBP1 are conferred Pb(II) tolerance and accumulate Pb(II). Our results suggest that ACBP1 overexpressors are potentially useful for applications in phytoremediation. Since very few plant proteins that bind and accumulate Pb(II) have been identified, our findings provide a feasible method in phytoremediating Pb(II).Key words: acyl-CoA-binding proteins, heavy metals, Pb(II) accumulation, phytoremediation, plasma membrane  相似文献   

15.
L Pan  M Kawai  L H Yu  K M Kim  A Hirata  M Umeda  H Uchimiya 《FEBS letters》2001,508(3):375-378
We identified genes based on screening of an Arabidopsis cDNA library for functional suppressors of mouse Bax-induced cell death of yeast cells. Interestingly, the cDNA encoding AtEBP, known as Arabidopsis thaliana ethylene-responsive element binding protein, was isolated numerous times in the functional screen (82% of all suppressors). Full-length AtEBP and its localization to the nucleus were essential for the suppression of Bax-induced cell death. Morphological abnormality of intracellular network that is a hallmark of Bax-induced cell death was attenuated by expression of AtEBP.  相似文献   

16.
17.
Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein   总被引:1,自引:0,他引:1  
Leung KC  Li HY  Xiao S  Tse MH  Chye ML 《Planta》2006,223(5):871-881
Cytosolic 10-kDa acyl-CoA-binding proteins (ACBPs) function in the storage and intracellular transport of acyl-CoA esters in eukaryotes. Fatty acids synthesized de novo in plant chloroplasts are exported as oleoyl-CoA and palmitoyl-CoA esters. In Arabidopsis, other than the 10-kDa ACBP, there exists five larger ACBPs (ACBP1 to ACBP5) of which homologues have not been characterized in other organisms. To investigate the significance of this gene family, we have attempted to subcellularly localize them and compare their acyl-CoA-binding affinities. We have previously shown that Arabidopsis ACBP1 and ACBP2 are membrane-associated proteins while ACBP4 and ACBP5 contain kelch motifs. Here, to localize ACBP3, we have expressed ACBP3-red fluorescent protein (DsRed2) from the CaMV 35S promoter. ACBP3-DsRed was localized extracellularly in transiently expressed tobacco BY-2 cells and onion epidermal cells. The function of the acyl-CoA-binding domain in ACBP3 was investigated by in vitro binding assays using (His)6-ACBP3, which was observed to bind [14C]arachidonyl-CoA with high affinity in comparison to [14C]palmitoyl-CoA and [14C]oleoyl-CoA. To identify the residues functional in binding, five mutants with single amino acid substitutions in the acyl-CoA-binding domain of (His)6-ACBP3 and (His)6-ACBP1 (which also binds [14C]arachidonyl-CoA) were generated by site-directed mutagenesis. Binding assays with arachidonyl-CoA revealed that replacement of a conserved R residue (R150A in ACBP1 and R284A in ACBP3), disrupted binding. In contrast, other substitutions in ACBP1 (Y126A, K130A, K152A and Y171A) and in ACBP3 (F260A, K264A, K286A and Y305A) did not affect arachidonyl-CoA binding, unlike their equivalents in (His)6-ACBP2, (His)6-ACBP4 and (His)6-ACBP5, which had altered binding to palmitoyl-CoA or oleoyl-CoA.  相似文献   

18.
Controversy exists in the literature over the involvement of the endoplasmic reticulum (ER) in the delivery of membrane proteins to peroxisomes. In this study, the involvement of the ER in the trafficking of two Arabidopsis (Arabidopsis thaliana) peroxisomal membrane proteins was investigated using confocal laser scanning microscopy of living cells expressing fusions between enhanced yellow fluorescent protein (eYFP) and AtPEX2 and AtPEX10. The fusion proteins were always detected in peroxisomes and cytosol irrespective of the location of the eYFP tag or the level of expression. The cytosolic fluorescence was not due to cleavage of the eYFP reporter from the C-terminal fusion proteins. Blocking known ER transport routes using the fungal metabolite Brefeldin A or expressing dominant negative mutants of Sar1 or RabD2a had no effect on the trafficking of AtPEX2 and AtPEX10 to peroxisomes. We conclude that AtPEX2 and AtPEX10 are inserted into peroxisome membranes directly from the cytosol.  相似文献   

19.
20.
ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号