首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Hemoglobin C differs from normal hemoglobin A by a glutamate-to-lysine substitution at position 6 of beta globin and is oxidatively unstable. Compared to homozygous AA erythrocytes, homozygous CC erythrocytes contain higher levels of membrane-associated hemichromes and more extensively clustered band 3 proteins. These findings suggest that CC erythrocytes have a different membrane matrix than AA erythrocytes.

Methodology and Findings

We found that AA and CC erythrocytes differ in their membrane lipid composition, and that a subset of CC erythrocytes expresses increased levels of externalized phosphatidylserine. Detergent membrane analyses for raft marker proteins indicated that CC erythrocyte membranes are more resistant to detergent solubilization. These data suggest that membrane raft organization is modified in CC erythrocytes. In addition, the average zeta potential (a measure of surface electrochemical potential) of CC erythrocytes was ≈2 mV lower than that of AA erythrocytes, indicating that substantial rearrangements occur in the membrane matrix of CC erythrocytes. We were able to recapitulate this low zeta potential phenotype in AA erythrocytes by treating them with NaNO2 to oxidize hemoglobin A molecules and increase levels of membrane-associated hemichromes.

Conclusion

Our data support the possibility that increased hemichrome deposition and altered lipid composition induce molecular rearrangements in CC erythrocyte membranes, resulting in a unique membrane structure.  相似文献   

2.
Ma PF  Guo ZH  Li DZ 《PloS one》2012,7(1):e30297

Background

Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change.

Methodology/Principal Findings

We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses.

Conclusions/Significance

Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.  相似文献   

3.

Background

Blood-sucking lice in the genera Pediculus and Pthirus are obligate ectoparasites of great apes. Unlike most bilateral animals, which have 37 mitochondrial (mt) genes on a single circular chromosome, the sucking lice of humans have extensively fragmented mt genomes. The head louse, Pediculus capitis, and the body louse, Pe. humanus, have their 37 mt genes on 20 minichromosomes. The pubic louse, Pthirus pubis, has its 34 mt genes known on 14 minichromosomes. To understand the process of mt genome fragmentation in the sucking lice of great apes, we sequenced the mt genome of the chimpanzee louse, Pe. schaeffi, and compared it with the three human lice.

Results

We identified all of the 37 mt genes typical of bilateral animals in the chimpanzee louse; these genes are on 18 types of minichromosomes. Seventeen of the 18 minichromosomes of the chimpanzee louse have the same gene content and gene arrangement as their counterparts in the human head louse and the human body louse. However, five genes, cob, trnS1, trnN, trnE and trnM, which are on three minichromosomes in the human head louse and the human body louse, are together on one minichromosome in the chimpanzee louse.

Conclusions

Using the human pubic louse, Pt. pubis, as an outgroup for comparison, we infer that a single minichromosome has fragmented into three in the lineage leading to the human head louse and the human body louse since this lineage diverged from the chimpanzee louse ~6 million years ago. Our results provide insights into the process of mt genome fragmentation in the sucking lice in a relatively fine evolutionary scale.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1843-3) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Background and Aims

Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown.

Methods

Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China.

Key Results

Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production.

Conclusions

These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.  相似文献   

6.

Background

Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.

Methods

Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.

Conclusions

This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.  相似文献   

7.
Evolutionary conservation of regulated longevity assurance mechanisms   总被引:3,自引:1,他引:2  

Background

To what extent are the determinants of aging in animal species universal? Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) is an evolutionarily conserved (public) regulator of longevity; yet it remains unclear whether the genes and biochemical processes through which IIS acts on aging are public or private (that is, lineage specific). To address this, we have applied a novel, multi-level cross-species comparative analysis to compare gene expression changes accompanying increased longevity in mutant nematodes, fruitflies and mice with reduced IIS.

Results

Surprisingly, there is little evolutionary conservation at the level of individual, orthologous genes or paralogous genes under IIS regulation. However, a number of gene categories are significantly enriched for genes whose expression changes in long-lived animals of all three species. Down-regulated categories include protein biosynthesis-associated genes. Up-regulated categories include sugar catabolism, energy generation, glutathione-S-transferases (GSTs) and several other categories linked to cellular detoxification (that is, phase 1 and phase 2 metabolism of xenobiotic and endobiotic toxins). Protein biosynthesis and GST activity have recently been linked to aging and longevity assurance, respectively.

Conclusion

These processes represent candidate, regulated mechanisms of longevity-control that are conserved across animal species. The longevity assurance mechanisms via which IIS acts appear to be lineage-specific at the gene level (private), but conserved at the process level (or semi-public). In the case of GSTs, and cellular detoxification generally, this suggests that the mechanisms of aging against which longevity assurance mechanisms act are, to some extent, lineage specific.  相似文献   

8.

Background

N-linked protein glycosylation plays an important role in various biological processes, including protein folding and trafficking, and cell adhesion and signaling. The acquisition of a novel N-glycosylation site may have significant effect on protein structure and function, and therefore, on the phenotype.

Results

We analyzed the human glycoproteome data set (2,534 N-glycosylation sites in 1,027 proteins) and identified 112 novel N-glycosylation sites in 91 proteins that arose in the human lineage since the last common ancestor of Euarchonta (primates and treeshrews). Three of them, Asn-196 in adipocyte plasma membrane-associated protein (APMAP), Asn-91 in cluster of differentiation 166 (CD166/ALCAM), and Asn-76 in thyroglobulin, are human-specific. Molecular evolutionary analysis suggested that these sites were under positive selection during human evolution. Notably, the Asn-76 of thyroglobulin might be involved in the increased production of thyroid hormones in humans, especially thyroxine (T4), because the removal of the glycan moiety from this site was reported to result in a significant decrease in T4 production.

Conclusions

We propose that the novel N-glycosylation sites described in this study may be useful candidates for functional analyses to identify innovative genetic modifications for beneficial phenotypes acquired in the human lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0468-5) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Polymorphisms are associated with chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary thromboembolism (PTE), but no polymorphism specific to CTEPH but not PTE has yet been reported. Fibrin resistance is associated with CTEPH, but the mechanism has not been elucidated.

Methods

Polymorphisms were analyzed in 101 CTEPH subjects, 102 PTE subjects and 108 healthy controls by Massarray or restriction fragment length polymorphism (RFLP). Plasmin-mediated cleavage of fibrin was characterized in 69 subjects (29 with CTEPH, 21 with PTE and 19 controls).

Results

Genotype frequencies and allele frequencies of fibrinogen Aα Thr312Ala were significantly higher in CTEPH subjects than in controls and PTE subjects, while there was no difference between PTE subjects and controls. The odd ratio (OR 2.037) and 95% confidence interval (95% CI, 1.262–3.289) showed that Thr312Ala polymorphism was a risk factor for CTEPH but not PTE. Fibrin from CTEPH subjects was more resistant to lysis than that from PTE subjects and controls. Fibrin resistance was significantly different between Aα Thr312Ala (A/G) genotypes within CTEPH subjects, and the fibrin with GG genotype was more resistant than that with AA and AG genotype.

Conclusions

Fibrinogen Aα Thr312Ala (A/G) polymorphism was associated with CTEPH, but not PTE, suggesting that the fibrinogen Aα Thr312Ala polymorphism may act as a potential biomarker in identifying CTEPH from PTE. GG genotype polymorphism contributes to CTEPH through increasing fibrin resistance, implying that PTE subjects with fibrinogen Aα GG genotype may need long-term anticoagulation therapy.  相似文献   

10.
Zamir E  Geiger B  Kam Z 《PloS one》2008,3(4):e1901

Background

Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined.

Methodology/Principal Findings

We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition.

Conclusions/Significance

Multicolor compositional imaging resolves “molecular signatures” characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional “contents-resolved” dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution.  相似文献   

11.

Background

The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction.

Methodology/Principal Findings

Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death.

Conclusion/Significance

BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.  相似文献   

12.
13.
14.
Yang Z  Zhao J  Jiang Y  Li C  Wang J  Weng X  Northoff G 《PloS one》2011,6(7):e21881

Objective

Major depressive disorder (MDD) has been characterized by abnormalities in emotional processing. However, what remains unclear is whether MDD also shows deficits in the unconscious processing of either positive or negative emotions. We conducted a psychological study in healthy and MDD subjects to investigate unconscious emotion processing and its valence-specific alterations in MDD patients.

Methods

We combined a well established paradigm for unconscious visual processing, the continuous flash suppression, with positive and negative emotional valences to detect the attentional preference evoked by the invisible emotional facial expressions.

Results

Healthy subjects showed an attentional bias for negative emotions in the unconscious condition while this valence bias remained absent in MDD patients. In contrast, this attentional bias diminished in the conscious condition for both healthy subjects and MDD.

Conclusion

Our findings demonstrate for the first time valence-specific deficits specifically in the unconscious processing of emotions in MDD; this may have major implications for subsequent neurobiological investigations as well as for clinical diagnosis and therapy.  相似文献   

15.

Background

Gene transduction has been considered advantageous for the sustained delivery of proteins to specific target tissues. However, in the case of hard tissues, such as bone, local gene delivery remains problematic owing to anatomical accessibility limitations of the target sites.

Methodology/Principal Findings

Here, we evaluated the feasibility of exogenous gene transduction in the interior of bone via axonal transport following intramuscular administration of a nonviral vector. A high expression level of the transduced gene was achieved in the tibia ipsilateral to the injected tibialis anterior muscle, as well as in the ipsilateral sciatic nerve and dorsal root ganglia. In sciatic transection rats, the gene expression level was significantly lowered in bone.

Conclusions/Significance

These results suggest that axonal transport is critical for gene transduction. Our study may provide a basis for developing therapeutic methods for efficient gene delivery into hard tissues.  相似文献   

16.
Jourdan M  Deutz NE  Cynober L  Aussel C 《PloS one》2011,6(11):e27002

Rationale

In elderly subjects, splanchnic extraction of amino acids (AA) increases during meals in a process known as splanchnic sequestration of amino acids (SSAA). This process potentially contributes to the age-related progressive decline in muscle mass via reduced peripheral availability of dietary AA. SSAA mechanisms are unknown but may involve an increased net utilization of ingested AA in the splanchnic area.

Objectives

Using stable isotope methodology in fed adult and old rats to provide insight into age-related SSAA using three hypotheses: 1) an increase in protein synthesis in the gut and/or the liver, 2) an increase in AA oxidation related to an increased ureagenesis, and 3) Kupffer cell (KC) activation consequently to age-related low-grade inflammation.

Findings

Splanchnic extraction of Leu (SPELeu) was doubled in old rats compared to adult rats and was not changed after KC inactivation. No age-related effects on gut and liver protein synthesis were observed, but urea synthesis was lower in old rats and negatively correlated to liver Arg utilization. Net whole-body protein synthesis and arterial AA levels were lower in old rats and correlated negatively with SPELeu.

Conclusion

SSAA is not the consequence of age-related alterations in ureagenesis, gut or liver protein synthesis or of KC activity. However, SSAA may be related to reduced net whole-body protein synthesis and consequently to the reduced lean body mass that occurs during aging.  相似文献   

17.

Background

Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes.

Methodology/Principal Findings

We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes.

Conclusion

The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.  相似文献   

18.

Purpose

To evaluate with Magnetic Resonance (MR) the degree of fatty replacement and edematous involvement in skeletal muscles in patients with Tubular Aggregate Myopathy (TAM). To asses the inter-observer agreement in evaluating muscle involvement and the symmetry index of fatty replacement.

Materials and Methods

13 patients were evaluated by MR to ascertain the degree of fatty replacement (T1W sequences) according to Mercuri''s scale, and edema score (STIR sequences) according to extent and site.

Results

Fatty replacement mainly affects the posterior superficial compartment of the leg; the anterior compartment is generally spared. Edema was generally poor and almost only in the superficial compartment of the leg. The inter-observer agreement is very good with a Krippendorff''s coefficient >0.9. Data show a total symmetry in the muscular replacement (McNemar-Bowker test with p = 1).

Conclusions

MR reveals characteristic muscular involvement, and is a reproducible technique for evaluation of TAM. There may also be a characteristic involvement of the long and short heads of the biceps femoris. It is useful for aimed biopsies, diagnostic hypotheses and evaluation of disease progression.  相似文献   

19.

Context

Publication bias jeopardizes evidence-based medicine, mainly through biased literature syntheses. Publication bias may also affect laboratory animal research, but evidence is scarce.

Objectives

To assess the opinion of laboratory animal researchers on the magnitude, drivers, consequences and potential solutions for publication bias. And to explore the impact of size of the animals used, seniority of the respondent, working in a for-profit organization and type of research (fundamental, pre-clinical, or both) on those opinions.

Design

Internet-based survey.

Setting

All animal laboratories in The Netherlands.

Participants

Laboratory animal researchers.

Main Outcome Measure(s)

Median (interquartile ranges) strengths of beliefs on 5 and 10-point scales (1: totally unimportant to 5 or 10: extremely important).

Results

Overall, 454 researchers participated. They considered publication bias a problem in animal research (7 (5 to 8)) and thought that about 50% (32–70) of animal experiments are published. Employees (n = 21) of for-profit organizations estimated that 10% (5 to 50) are published. Lack of statistical significance (4 (4 to 5)), technical problems (4 (3 to 4)), supervisors (4 (3 to 5)) and peer reviewers (4 (3 to 5)) were considered important reasons for non-publication (all on 5-point scales). Respondents thought that mandatory publication of study protocols and results, or the reasons why no results were obtained, may increase scientific progress but expected increased bureaucracy. These opinions did not depend on size of the animal used, seniority of the respondent or type of research.

Conclusions

Non-publication of “negative” results appears to be prevalent in laboratory animal research. If statistical significance is indeed a main driver of publication, the collective literature on animal experimentation will be biased. This will impede the performance of valid literature syntheses. Effective, yet efficient systems should be explored to counteract selective reporting of laboratory animal research.  相似文献   

20.

Background

The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically.

Methodology/Principal Findings

We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization.

Conclusions

Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号