首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelin converting enzyme of bovine carotid artery smooth muscles   总被引:4,自引:0,他引:4  
This is the first report clearly demonstrating the presence of endothelin (ET) converting enzyme in vascular smooth muscle. Like cultured endothelial cells, noncultured vascular smooth muscle homogenate of bovine carotid arteries, converts human big ET- 1 to ET-1 at pH 3.0, pH 5.0 and pH 7.0, and the apparent ratio of these three activities is about 6:5:1, respectively. Peptides generated during incubation of the homogenate and big ET- 1 at the three pHs were identified as ET- 1 by radioimmunoassay and high performance liquid chromatography. The two acid enzymes are in the cytosol (103,000xg sup) and are inhibited by pepstatin A, while the neutral enzyme is sensitive to EDTA or phosphoramidon; 73% of the neutral enzyme activity was membrane-bound and the remainder (27%) cytosolic.  相似文献   

2.
This is the first report clearly demonstrating the presence of endothelin (ET) converting enzyme (ECE) in non-vascular cells (renal epithelial cell lines, MDCK and LLC-PK1). ECEs derived from these epithelial cells were very similar to the endothelial ECE in the following biochemical properties: 1) The optimum pH was 7.0; 2) the Km value for big ET-1 was approximately 30 microM; 3) the enzyme was potently inhibited by EDTA, o-phenanthroline and phosphoramidon; and 4) the enzyme did not convert big ET-2 or big ET-3. These data suggest that phosphoramidon-sensitive ECE is involved in the processing of big ET-1 to ET-1 in the renal tubule.  相似文献   

3.
Neutral metalloproteases with endothelin-1 (ET-1) converting activity were detected in membranous and cytosolic fractions of cultured endothelial cells (EC) from bovine carotid artery in a ratio of 5:1, respectively. The cytosolic enzyme specifically and quantitatively converts big ET-1 to ET-1 (Km = 10.7 microM), but does not convert big ET-3. Like the membranous enzyme, the cytosolic enzyme is only active at pH 6.5-7.5, and is competitively inhibited by phosphoramidon (Ki = 0.79 microM). The apparent molecular weight of the cytosolic enzyme is about 540 kD, which is 5-6 times greater than that of the membranous enzyme. These results indicate the presence of two types of phosphoramidon-sensitive neutral ET-converting enzyme in vascular EC.  相似文献   

4.
Analysis of big endothelin-1 digestion by cathepsin D   总被引:2,自引:0,他引:2  
Digestion of big endothelin (ET)-1 by cathepsin D, which is the only substantially identified protease showing ET converting enzyme activity, was characterized. Increased doses of cathepsin D showed decrease of immunoreactive (ir-) ET produced from big ET-1. Time course of big ET-1 conversion showed marked increase of ir-ET in a relatively short period, but further incubation resulted in the decrease of ir-ET. Incubation at various pHs with different doses of cathepsin D revealed that low doses of cathepsin D yielded the maximum production of ir-ET at pH 3.5-4.0, but higher doses of cathepsin D showed a bimodal curve of ir-ET production, which may be due to degradation of ir-ET. HPLC analysis revealed that cathepsin D cleaves Asn18-Ile19 bond in addition to Trp21-Val22 bond of big ET-1. These data suggests cathepsin D is not a physiological endothelin converting enzyme.  相似文献   

5.
Endothelin-1 (ET-1), a 21 amino-acid potent vasoconstrictor peptide, is produced from the biologically inactive intermediate big ET-1 via an endoproteolytic cleavage between Trp-21 and Val-22 by endothelin converting enzyme (ECE). cDNA sequence analysis predicts that the two other members of the endothelin family, ET-2 and ET-3, are also generated from the corresponding intermediates called big ET-2 and big ET-3, respectively. The metalloproteinase inhibitor phosphoramidon inhibited the conversion of big ET-1 into mature ET-1 both in vivo and in cultured endothelial cells, suggesting that ECE may be a neutral metalloproteinase. In this study, we solubilized and partially purified ECE from the membrane fraction of porcine lung. Using gel filtration chromatography, we separated two distinct ECE activities, designated M1 (apparent molecular mass approx. 300 kDa) and M2 (approx. 65 kDa). Optimum pH for the cleavage of big ET-1 by M1 and M2 was 7.0 and 7.5, respectively. M1 efficiently converted human big ET-1(1–38) to ET-1, but not human big ET-2(1–37) or human big ET-3(1–41)-amide. In contrast, M2 converted both big ET-1 and big ET-2, but not big ET-3. M1 was inhibited by phosphoramidon (IC50 approx. 1 μM) but not by thiorphan or bacitracin. In contrast, M2 was inhibited by much lower concentrations of phosphoramidon (IC50 approx. 0.3 nM), as well as by thiorphan and bacitracin. ECE activity in M1 was able to bind to a concanavalin A-agarose column and was eluted by α-methyl-d-glucoside, indicating that the ECE is glycosylated. From these results, M1 and M2 from the porcine lung membrane are similar to the candidate of ECE in endothelial cells and neutral endopeptidase in kidney (EC 3.4.24.11), respectively. Taken in conjunction with the previous finding that neither thiorphan nor bacitracin affected the conversion of endogenously synthesized big ET-1 in cultured endothelial cells, we conclude that physiologically relevant ECE found in the endothelial cells is more similar to M1 than to M2.  相似文献   

6.
We propose a candidate for the "putative" endothelin (ET) converting enzyme in the cultured endothelial cells (ECs) of bovine carotid artery. The enzyme is membrane-bound, soluble in 0.5% Triton X-100, and capable of converting human big ET-1 to ET-1 by a specific cleavage between Trp21 and Val22. The conversion reached 90% after a 5-hr incubation in the presence of DFP, PCMS and pepstatin A, but it was inhibited by EDTA, omicron-phenanthroline or phosphoramidon. The enzyme is very sensitive to pH, and active only between pH 6.6 and pH 7.6. Conversion of big ET-3 by this enzyme was only 1/9 that of big ET-1. From these results, ET-1 converting enzyme in the bovine EC is most likely to be a membrane-bound, neutral metalloendopeptidase, which is much less susceptible to big ET-3.  相似文献   

7.
Effects of various protease inhibitors on the conversion of big endothelin (ET)-1 to ET-1 in cultured endothelial cells were analyzed. A metal protease inhibitor, phosphoramidon, decreases the amount of ET-1 and increase that of big ET-1 released. This effect is dose-dependent and not nonspecific. When the contents of ET-1 and big ET-1 in the cells after culturing in the medium with or without phosphoramidon were measured, the ratio of ET-1: big ET-1 in the cells was 3.3 : 1 and phosphoramidon inverted the ratio in the cells to 1 : 3.5. These data strongly suggest that a phosphoramidon-sensitive protease converts big ET-1 to mature ET-1 intracellularly.  相似文献   

8.
We have recently found that cultured vascular endothelial cells (ECs) contain two types of metalloproteinases which convert big endothelin-1 (big ET-1) to endothelin-1 (ET-1) via a single cleavage between Trp21 and Val22. In the present study, two enzymes were clearly differentiated by using sulfhydryl blocking reagents and anion-exchange HPLC. As reported, the converting activity of the membrane fraction of ECs was specifically inhibited by phosphoramidon. N-ethylmaleimide (NEM) markedly enhanced the apparent converting activity of the membrane fraction. This enhancement was not due to the direct action on the converting enzyme, but rather to inhibition of the degradation of big ET-1 and/or ET-1. In contrast, the converting activity of the cytosolic fraction was abolished by NEM treatment. Effects of phosphoramidon and NEM on converting activities of both fractions were confirmed after anion-exchange HPLC of each fraction, using a COSMOGEL QA column. Our results provide new information on two types of metalloproteinases which convert big ET-1 to ET-1, in vascular ECs.  相似文献   

9.
Endothelin is a potent peptide vasoconstrictor. The final step in the processing of endothelin has been postulated to be the cleavage of the Trp21-Val22 peptide bond in proendothelin by a putative endothelin-converting enzyme. A soluble extract of primary porcine aortic endothelial cells was found to contain an enzyme activity that converted proendothelin-1 (proET-1) to an endothelin-1 (ET-1)-like peptide as determined by the rabbit aortic ring contraction assay. This enzyme was partially purified by DE52 ion-exchange chromatography. Incubation of proET-1 with the partially purified enzyme generated a product which had a retention time on HPLC identical to that of authentic ET-1. Further analysis of the product showed that it caused contraction of rabbit aortic rings, had a molecular weight identical to ET-1 as measured by fast atom bombardment mass spectrometry, and competed for [125I]ET-1 binding in an RIA using specific antibodies which recognize the carboxy terminal tryptophan of ET-1. The enzyme activity could be inhibited by thiol protease inhibitors such as Z-phe-pheCHN2 and p-hydroxymercuribenzoate, but not by serine- or metalloprotease inhibitors. The optimal pH for the enzymatic activity was between 7.0 and 7.5, and no activity was detected at pH 4.0. These results demonstrate that this thiol protease is a potential endothelin-converting enzyme.  相似文献   

10.
A permanent vascular endothelial cell line, EA.hy 926, was shown to express endothelin-1 (ET-1) mRNA and to secrete big ET-1 and ET-1 into culture medium. The concentration of both big ET-1 and ET-1 was significantly increased in EA.hy 926 culture medium by phosphoramidon, a metalloproteinase inhibitor, suggesting that phosphoramidon sensitive protease(s) may be responsible for the degradation of ET-1 and big ET-1. EA.hy 926 cells responded to various regulators of ET-1 similarly as primary human vascular endothelial cells. The production of ET-1 was increased by thrombin and decreased by vasodilators such as atrial natriuretic peptide, brain natriuretic peptide and nitroprusside, and by 8-bromo cyclic GMP and papaverine. This continuous human endothelial hybrid cell line could facilitate studies of regulation of ET-1 production in human endothelial cells, which in primary cultures have limited replication potential.  相似文献   

11.
Incubation of big endothelin-3 (big ET-3(1-41)) with the membrane fraction obtained from cultured endothelial cells (ECs) resulted in an increase in immunoreactive-ET (IR-ET). This increasing activity was markedly suppressed by phosphoramidon, which is known to inhibit the conversion of big ET-1(1-39) to ET-1(1-21). Reverse-phase HPLC of the incubation mixture of the membrane fraction with big ET-3 revealed one major IR-ET component corresponding to the elution position of synthetic ET-3(1-21). When the cultured ECs were incubated with big ET-3, a conversion to the mature ET-3, as well as an endogenous ET-1 generation, was observed. Both responses were markedly suppressed by phosphoramidon. By the gel filtration of 0.5% CHAPS-solubilized fraction of membrane pellets of ECs, the molecular mass of the proteinase which converts big ET-1 and big ET-3 to their mature form was estimated to be 300-350 kDa. Phosphoramidon almost completely abolished both converting activities of the proteinase. We conclude that the above type of phosphoramidon-sensitive metalloproteinase functions as an ET-converting enzyme to generate the mature form from big ET-1 and big ET-3 in ECs.  相似文献   

12.
We have developed a rapid and convenient assay for measurement of the action of endothelin (ET) converting enzyme (ECE) using the scintillation proximity assay (SPA) principle. On incubation of [125I]big ET-1 at 37 degrees C for 0.5-6 hr with an enzyme preparation, the reaction was terminated by the addition of an ET-1-specific antibody formulated in a buffer designed to shift the pH to alkaline. The antibody was allowed to come to equilibrium for 1 hr at room temperature and the amount of ET-1 produced, detected in a single step by the addition of protein A SPA beads. Using this assay, ECE activities of enzyme preparations obtained from porcine cultured endothelial cells and rat lung were clearly detected. These activities were inhibited by phosphoramidon in a concentration-dependent manner. The SPA based assay is homogeneous requiring no separation steps and takes a half day to complete. This method is therefore suitable for the high throughput screening of potential ECE inhibitors.  相似文献   

13.
The activities of β-glucanase, xylanase, amylase, α-galactosidase and protease were measured at their published optimum pH levels and at pH levels of 3.0, 6.0, 6.5, 7.0 and 7.5 to simulate pH levels of the gizzard, the diet, the crop, and the proximal and distal parts of small intestine, respectively. The activity of β-glucanase was determined by measuring reducing sugars after incubation of β-glucan. Xylanase activity was assayed by measuring xylose after hydrolysis of xylan. The activity of amylase was measured through hydrolysis of soluble starch. The assay of α-galactosidase was based on a hydrolysis of p-nitrophenyl-α-d-galactoside followed by measurement of liberated p-nitrophenol. The activity of protease was assayed by measuring tyrosine after enzymatic hydrolysis of casein. β-Glucanase had high activity at pH levels of 3.0–7.0. Xylanase had no enzyme activity at pH 3.0, but had high activity at pH levels of 6.0–7.0. Amylase had high activity at pH levels of 6.0 and 6.5 but had no or very low activity at pH 3.0, 7.0 and 7.5. α-Galactosidase had high activity at pH 6, but not at other pH levels tested. Protease had either no or very low activity at all pH levels except at pH 3.0. These results suggest that the pH levels commonly found in the avian digestive tract may be a limiting factor for maximum activity of the exogenous enzymes, such as amylase, α-galactosidase and protease.  相似文献   

14.
The aspartic protease, cathepsin E, has been shown to specifically cleave big endothelin (big ET-1) at the Trp21-Val22 bond to produce endothelin (ET-1) and the corresponding C-terminal fragment. To determine whether cathepsin E is a physiologically relevant endothelin converting enzyme (ECE), three novel and potent inhibitors of cathepsin E were administered to conscious rats prior to a pressor challenge with big ET-1. One of the inhibitors of cathepsin E, SQ 32,056 (3 mg/kg i.v.), blocked the big ET-1 response. However, this dose of SQ 32,056 also blocked the pressor response to ET-1. Phosphoramidon specifically inhibited the Big ET-1 pressor response. These results suggest that ECE is not cathepsin E.  相似文献   

15.
Stable transformants with preproendothelin-1 (preproET-1) cDNA were established for the study of the regulation of endothelin-1 (ET-1) biosynthesis in human cells. ET-1, a potent vasoconstrictor peptide, is produced by endothelial cells and is secreted into the blood at a low level. Human preproET-1 cDNA was introduced into two immortal human cell lines, t-HUE2, an endothelial cell line, and Raji, a B cell line, with Ecogpt selection. Several stable transformants of t-HUE2 expressed extraordinarily high levels of preproET-1 specific mRNA and secreted ET-1 into serum-free culture medium, while the transformants of Raji cells expressed high levels of ET-1 mRNA, but secreted a negligible amount of ET-1. Immunocytochemical studies of intracellular ET-1 content revealed that there were some defects in the translation or processing of preproET-1 in the B cell line transformants. In addition, the ratio of ET-1 to ET-1 precursor (big ET-1) was much higher in the t-HUE2 transformants than in normal endothelial cells, suggesting that t-HUE2 transformants (for example t-HUE2-1) possess high levels of endothelin converting enzyme (ECE). The establishment of stable transformants producing high levels of ET-1 in serum-free medium will be useful for the study of cell-type-specific translation and processing to mature ET-1, and of the regulatory factors of ECE.  相似文献   

16.
We have developed monoclonal (KY-ET-1-I) and polyclonal (ET-F5) antibodies against endothelin-1 (ET-1) and established sensitive radioimmunoassays (RIAs) with different specificities. The RIA with KY-ET-1-I detected ET-1, ET-2 and ET-3, while the RIA with ET-F5 recognized ET-3 very weakly. Using these RIAs, we have investigated the concentration and molecular forms of ET-1-like immunoreactivity (-LI) in culture medium of bovine aortic endothelial cells and human plasma. Culture medium of endothelial cells contained two major components compatible with big ET and ET-1. ET-1-LI was also detected in human plasma. ET-1-LI in human plasma consisted of apparent two components, the small molecular form emerging at the position of ET-1 and the large form with the peak eluting at the preceding fraction of the elution position of big ET. The concentration of the small form of ET in human plasma was about 5 pg/ml.  相似文献   

17.
In this study, some parameters for the production and caseinolytic activity of an extracellular thermostable acid protease from a thermoacidophilic archaeon Thermoplasma volcanium were determined. The highest level of growth and enzyme production were detected at pH 3.0 over an incubation period of 192 h at 60 degrees C. The pH optimum for the acid protease activity was 3.0 and the enzyme was fairly stable over a broad pH range (pH 3.0-8.0). The temperature for maximum activity of the enzyme was 55 degrees C and activity remained stable between 50 degrees C and 70 degrees C. These features could be of relevance for various biotechnological applications of this enzyme. Serine-(PMSF), cysteine-(DTT), metallo-(EDTA) and aspartate-(pepstatin) protease inhibitors did not inhibit the caseinolytic activity of the enzyme. Therefore, Tp. volcanium acid protease could be a member of the pepstatin-insensitive carboxyl proteinases.  相似文献   

18.
G C Kundu  I B Wilson 《Life sciences》1992,50(13):965-970
An enzyme partially purified from bovine lung membranes appears to be endothelin converting enzyme (ECE). This enzyme specifically cleaves big endothelin-1 (big ET-1) at the proper site, between Trp21 and Val22, with maximum activity at pH 7.5 and with a Km of roughly 3 microM, to produce endothelin-1 (ET-1) and C-terminal peptide (CTP). This same enzyme hydrolyzes the fluorogenic substrate succinyl-Ile-Ile-Trp-methylcoumarinamide to release the highly fluorescent 7-amino-4-methylcoumarin. The peptide derivative has the same amino acid sequence as big ET-1 and is a good substrate with a Km of about 27 microM. This enzyme is a metalloproteinase. It is not inhibited by five common proteinase inhibitors (pepstatin A, PMSF, NEM, E-64 and thiorphan) but it is inhibited by phosphoramidon and chelating compounds. The apoenzyme is restored to nearly full activity by a zinc-EDTA buffer with pZn = 13.  相似文献   

19.
Conversion of porcine big endothelin (big ET) to endothelin (ET) by an extract from cultured porcine aortic endothelial cells was investigated using a radioimmunoassay (RIA) specific for ET and reverse-phase high performance liquid chromatography (RP-HPLC). When big ET was incubated with the extract at an acid pH in the presence of E-64, a cysteine protease inhibitor, the amount of immunoreactive-ET (IR-ET) in the incubation mixture was greatly increased and the optimum pH for this increased reaction was 4.0. The extract-induced increase in IR-ET was completely inhibited by pepstatin-A. These immunoreactive alterations correlated with those in the vasoconstrictor activity. When the incubation mixture of big ET with the cell extract was applied to the RP-HPLC, the IR-ET eluted at the same retention time as seen with synthetic porcine ET. We suggest that a pepstatin-sensitive aspartic protease is involved in the conversion of big ET to ET in vascular endothelial cells.  相似文献   

20.
Time-dependent secretion of immunoreactive-endothelin (IR-ET) from cultured porcine aortic endothelial cells was markedly suppressed by phosphoramidon is due to proteinase inhibitor. Analysis of the culture supernatant with or without phosphoramidon by reverse-phase high performance liquid chromatography confirmed that the suppression of IR-ET secretion by phosphoramidon is due to a decreae in secretion of endothelin-1-like materials. The secretion of the C-terminal fragment (CTF, 22-39)-like materials of big ET-1 was also decreased by phosphoramidon, whereas there was an increased secretion of big ET-1-like materials. These data strongly suggest that phosphoramidon suppresses the secretion of ET-1 from cultured endothelial cells by inhibiting the conversion of big ET-1 to ET-1. It is most likely that phosphoramidon-sensitive metalloproteinase is responsible for the processing of big ET-1 in vascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号