首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of blood components, nerve-cord severance, and ecdysone therapy on the posterior midgut epithelial cells of 5th-instar Rhodnius prolixus nymphs 10 days after feeding were analyzed by transmission electron microscopy. Cutting the nerve-cord of the blood-fed insects partially reduced the development of microvilli and perimicrovillar membranes (PMM), and produced large vacuoles and small electrondense granules; insects fed on Ringer's saline diet exhibited well developed microvilli and low PMM production; swolled rough endoplasmatic reticulum and electrondense granules; Ringer's saline meal with ecdysone led to PMM development, glycogen particles, and several mitochondria in the cytoplasm; epithelial cells of the insects fed on Ringer's saline meal whose nerve-cord was severed showed heterogeneously distributed microvilli with reduced PMM production and a great quantity of mitochondria and glycogen in the cytoplasm; well developed microvilli and PMM were observed in nerve-cord severed insects fed on Ringer's saline meal with ecdysone; Ringer's saline diet containing hemoglobin recovered the release of PMM; and insects fed on human plasma showed slightly reduced PMM production, although the addition of ecdysone in the plasma led to a normal midgut ultrastructural organization. We suggest that the full development of microvilli and PMM in the epithelial cells depends on the abdominal distension in addition to ingestion of hemoglobin, and the release of ecdysone.  相似文献   

2.
Studies were carried out to identify proteins involved in the interface of Trypanosoma cruzi with the perimicrovillar membranes (PMM) of Rhodnius prolixus. Video microscopy experiments demonstrated high level of adhesion of T. cruzi Dm 28c epimastigotes to the surface of posterior midgut cells of non-treated R. prolixus. The parasites however were unable to attach to gut cells obtained from decapitated or azadirachtin-treated insects. The influence of carbohydrates on the adhesion to insect midgut was confirmed by inhibition of parasite attachment after midgut incubation with N-acetylgalactosamine, N-acetylmannosamine, N-acetylglucosamine, D-galactose, D-mannose or sialic acid. We observed that hydrophobic proteins in the surface of epimastigotes bind to polypeptides with 47.7, 45.5, 44, 43, 40.5, 36, 31 and 13kDa from R. prolixus PMM and that pre-incubation of lectins specifically inhibited binding to 31, 40.5, 44 and 45.5kDa proteins. We suggest that glycoproteins from PMM and hydrophobic proteins from epimastigotes are important for the adhesion of the parasite to the posterior midgut cells of the vector.  相似文献   

3.
The development of perimicrovillar membranes (PMM) from midgut cells of starved and fed Dysdercus peruvianus was studied by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and assays for specific enzymatic markers of the perimicrovillar membranes (alpha-glucosidase), perimicrovillar space (aminopeptidase) and microvillar membranes (beta-glucosidase). High activities of these enzymes were observed 6h post-feeding and significant production of membranes was observed at 30 h post-feeding. In the gut cells of starved insects, the rough endoplasmic reticulum was organized in concentric bundles, with a greater number of mitochondria in the cellular apex. The presence of electron dense double-membrane vesicles and the production of PMM were not observed in this condition. Thirty hours post-feeding, a disorganization of the rough endoplasmic reticulum was observed, and it was possible to see double-membrane vesicles close to the cell apex. The membrane system formation was evident with a significant development of PMM in the midgut lumen. The luminal surface of the midgut during starvation and up to 48 h post-feeding was monitored using SEM. It was demonstrated that in the starved condition, the PMM was virtually absent from gut cells, except at the base of the microvilli. At 6h post-feeding, the microvilli were already completely covered with PMM, but with a maximum of PMM formation seen at 30 h post-feeding. Signals of PMM degradation were observed 48 h after pulse feeding.  相似文献   

4.
Antiserum raised against Rhodnius prolixus perimicrovillar membranes (PMM) and midgut tissue interfered with the midgut structural organization and reduced the development of Trypanosoma cruzi in the R. prolixus insect vector. SDS-PAGE and Western blot analyses confirmed the specific recognition of midgut proteins by the antibody. Feeding, mortality, molt, and oviposition of the insects were unaffected by feeding with the antiserum. However, the eclosion of the eggs were reduced from R. prolixus females treated with antiserum. Additionally, in vivo evaluation showed that after oral treatment with the antiserum, the intensity of infection with the Dm-28c clone of T. cruzi decreased in the digestive tract of fifth-instar nymphs and in the excretions of R. prolixus adults. These results suggest that the changes observed in the PMM organization in the posterior midgut of R. prolixus may not be important for triatomine survival but the antiserum acts as a transmission-reduction vaccine able to induce significant decreases in T. cruzi infection in the vector.  相似文献   

5.
Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid–Schiff (PAS–Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS–Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease.  相似文献   

6.
Studies on the effects of decapitation, head transplantation and ecdysone therapy on the ultrastructural organization of the midgut in 5th-instar larvae of Rhodnius prolixus, were carried out. Control insects had a typical and significant organization of the epithelial cells (mainly microvilli, extracellular membrane layers and basal portion of the epithelial cells) of the midgut (stomach and intestine) during the entire period of the experiment. However, the host larvae, when decapitated 1 day after feeding, demonstrated significant changes in the ultrastructural organization of the epithelial cells of these compartments. In converse experiments, head transplantations from untreated donors 4-5 days after feeding into headless larvae sustained the ultrastructural organization of the epithelial cells in the midgut. Oral therapy with ecdysone (5 &mgr;g/mL of blood meal) in decapitated insects significantly reversed the altered organization of the stomach and intestine. These results point to a brain factor, possibly the prothoracicotropic hormone (PTTH) which stimulates ecdysteroid production in the prothoracic glands, may be a factor responsible, directly or indirectly, for the midgut cell organization in R. prolixus.  相似文献   

7.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

8.
Post-feeding ultrastructural modifications to the midgut cells of Rhodnius prolixus are quantified using morphometry. Changes in relative and absolute volumes and/or surface areas are demonstrated for the whole cells, nuclei, mitochondria, rough endoplasmic reticulum, lysosomes, Golgi apparatus, storage vesicles, glycogen, microvilli, and basal labyrinth, before and during blood digestion. These parameters are separately determined for cells from each of the three midgut regions, and are correlated against previously published cycles of digestive enzyme activities. The results support the proposed division of the midgut of R. prolixus into three functional regions: the anterior midgut or crop is the site of water transport immediately after feeding, and of lipid and glycogen storage. No protein digestion occurs in this region. The anterior intestine is the site of most proteinase synthesis and secretion, although limited absorption and nutrient storage also occurs. The posterior intestine is responsible for some secretory activity, but is also implicated as the most important region for absorption of digested nutrients and for carbohydrate absorption and storage.  相似文献   

9.
Trypanosoma cruzi epimastigotes adhere in vivo to the luminal surface of their triatomid vector digestive tract by molecular mechanisms, as yet, unknown. Here, we show that the administration of 0.5 microM epimastigote major surface glycoinositolphospholipids (GIPLs) to the infected bloodmeal inhibits up to 90% parasite infection in Rhodnius prolixus. The parasite behavior was investigated in vitro using fragments of the insect midgut. The addition of GIPLs in concentration as low as 50-100 nM impaired 95% the attachment of epimastigotes. Previous treatment of GIPLs with trifluoroacetic acid to remove the terminal beta-galactofuranosyl residues reversed 50% the epimastigote in vitro attachment. The binding sites of purified GIPLs on the luminal surface of the posterior midgut were exposed by immunofluorescence microscopy. These observations indicate that GIPLs are one of the components involved in the adhesion of T. cruzi to the luminal insect midgut surface and possibly one of the determinants of parasite infection in the insect vector.  相似文献   

10.
Cry4A is a dipteran-specific δ-endotoxin produced by Bacillus thuringiensis, and toxic to Culex pipiens (mosquito) larvae. The immunohistochemical staining of the midgut sections of C. pipiens larvae revealed that Cry4A bound in vitro and in vivo to the microvilli of the epithelial cells of posterior midgut and gastric caecae. The binding of digoxigenin-labeled Cry4A (DIG-Cry4A) to the apical microvilli was almost abolished in the presence of excess unlabeled Cry4A, suggesting that the binding of Cry4A to the microvilli was specific. Several Cry4A-specific binding proteins were detected using the ligand blotting technique with DIG-Cry4A. Moreover, an insertion assay was done, where the binding of DIG-Cry4A to the BBMVs was completely irreversible and did not compete with excess unlabeled Cry4A. On the basis of these results, we propose a schematic interpretation for the binding process of Cry4A.  相似文献   

11.
Cry4A is a dipteran-specific delta-endotoxin produced by Bacillus thuringiensis, and toxic to Culex pipiens (mosquito) larvae. The immunohistochemical staining of the midgut sections of C. pipiens larvae revealed that Cry4A bound in vitro and in vivo to the microvilli of the epithelial cells of posterior midgut and gastric caecae. The binding of digoxigenin-labeled Cry4A (DIG-Cry4A) to the apical microvilli was almost abolished in the presence of excess unlabeled Cry4A, suggesting that the binding of Cry4A to the microvilli was specific. Several Cry4A-specific binding proteins were detected using the ligand blotting technique with DIG-Cry4A. Moreover, an insertion assay was done, where the binding of DIG-Cry4A to the BBMVs was completely irreversible and did not compete with excess unlabeled Cry4A. On the basis of these results, we propose a schematic interpretation for the binding process of Cry4A.  相似文献   

12.
The process of interaction of the Choachi strain of Trypanosoma rangeli with intestinal epithelial cells of Rhodnius prolixus was analyzed in experiments carried out in vitro and in vivo. For the in vitro experiments small fragments of the anterior region of the posterior midgut were incubated in the presence of the parasites, fixed, and processed for observation with the scanning electron microscope. Parasites attached to the surface of some epithelial cells, especially to the extracellular membrane layers (perimicrovillar membranes), were observed. For the in vivo experiments insects were infected with cultures of T. rangeli, sacrificed at different time intervals, and then processed for scanning and transmission electron microscopy. An intimate contact between the parasites and the membrane layers was observed. The parasites penetrated into cells that showed an electronlucent cytoplasm and a damaged surface, moved within the cytoplasm of the epithelial cell, reached the basal region, crossed the basal lamina, and entered the hemocoel.  相似文献   

13.
Tobacco hornworm, Manduca sexta, is a model insect for studying the action of Bacillus thuringiensis (Bt) Cry toxins on lepidopterans. The proteins, which bind Bt toxins to midgut epithelial cells, are key factors involved in the insecticidal functions of the toxins. Three Cry1A-binding proteins, viz., aminopeptidase N (APN), the cadherin-like Bt-R1, and membrane-type alkaline phosphatase (m-ALP), were localized, by immunohistochemistry, in sections from the anterior, middle, and posterior regions of the midgut from second instar M. sexta larvae. Both APN and m-ALP were distributed predominantly along microvilli in the posterior region and to a lesser extent on the apical tip of microvilli in the anterior and middle regions. Bt-R1 was localized at the base of microvilli in the anterior region, over the entire microvilli in the middle region, and at both the apex and base of microvilli in the posterior region. The localization of rhodamine-labeled Cry1Aa, Cry1Ab, and Cry1Ac binding was determined on sections from the same midgut regions. Cry1Aa and Cry1Ab bound to the apical tip of microvilli almost equally in all midgut regions. Binding of Cry1Ac was much stronger in the posterior region than in the anterior and middle regions. Thus, binding sites for Bt proteins and Cry1A toxins are co-localized on the microvilli of M. sexta midgut epithelial cells.  相似文献   

14.
The utilization of dietary lipids was studied in adult females of Rhodnius prolixus with the use of radiolabeled triacylglycerol (TAG). It was shown that (3)H-triolein, when added to blood meal, was hydrolyzed to free fatty acids in the posterior midgut lumen. Subsequently, free fatty acids were absorbed by posterior midgut epithelium and used in the synthesis of phospholipids, diacylglycerol (DAG) and TAG. Phospholipids, DAG and free fatty acids were then found in hemolymph, from where they were rapidly cleared, and label was found in the fat body, mainly associated with TAG. Radioactive lipids, especially TAG and phospholipids, also accumulated in the ovaries. The TAG-lipase activities of posterior midgut luminal content and tissue were characterized by incubation of these samples with (3)H-triolein in the presence of the detergent Triton X-100 and determination of the amounts of released radioactive free fatty acids. Under the conditions employed here, the release of free fatty acids was proportional to the incubation time and to the amount of sample obtained from insect midgut (enzyme source) that was added. TAG-lipase activities were affected by pH and posterior midgut tissue showed optimum activity around pH 7.0-7.5, but the luminal content had the highest activities as pH decreased. Differences in activities were observed according to calcium concentration in the medium. TAG-lipase activities were also affected by the concentration of NaCl and were activated in the presence of increasing salt concentrations. These activities were inhibited by phenylmethylsulphonyl fluoride (PMSF). On the second day after blood meal, when digestion is very intense, TAG-lipase activities were maximal and then gradually decreased.  相似文献   

15.
Rhodnius prolixus midgut was analysed using transmission electron microscopy and electron spectroscopic imaging in order to localize the cellular structures involved in haem metabolism. In the posterior midgut, special cellular electron-dense structures were observed. These structures are here designated haemoxisomes. Haemoxisomes are present in the epithelial cells at various time points after a blood meal. Several days after the blood meal, some of them become less electron-dense. By electron spectroscopic imaging, large amounts of iron and oxygen were detected in these cellular structures. The iron is probably bound to the porphyrin ring as an iron-protoporphyrin IX complex, as detected using the diaminobenzidine technique. An interesting observation was the presence of endoplasmic reticulum surrounding the haemoxisomes during some special periods. Iron content was monitored in the posterior midgut epithelium and was found to be constant at the initial days after a blood meal, but slightly higher at the end of the digestive process (from 13th up to 20th day). These results are in agreement with the observation that the appearance of the haemoxisomes changes at the end of the digestive process. The ability to degrade haem seems to depend on the presence of endoplasmic reticulum as observed using a haem degradation assay in the presence of an endoplasmic reticulum-enriched fraction. Taken together these results suggest that haemoxisomes may play a role in intracellular haem detoxification.  相似文献   

16.
Summary Columnar cells of the larval midgut of the cassava hornworm, Erinnyis ello, display microvilli with vesicles pinching off from their tips (anterior and middle midgut) or with a large number of double membrane spheres budding along their length (posterior midgut). Basal infoldings in columnar cells occur in a parallel array with many openings to the underlying space (posterior midgut) or are less organized with few openings (anterior and middle midgut). Goblet cells have a cavity, which is formed by invagination of the apical membrane and which occupies most of the cell (anterior and middle midgut) or only its upper part (posterior midgut). The infolded apical membrane shows modified microvilli, which sometimes (posterior midgut) or always (anterior and middle midgut) contain mitochondria. The cytoplasmic side of the membrane of the microvilli that contain mitochondria are studded with small particles. The results suggest that the anterior and middle region of the midgut absorbs water, whereas the posterior region secretes it. This results in a countercurrent flux of fluid, which is responsible for the enzyme recovery from undigested food before it is expelled. Intermediary and final digestion of food probably occur in the columnar cells under the action of plasma membrane-bound and glycocalix-associated enzymes.  相似文献   

17.
Rice brown planthoppers (Nilaparvata lugens) were fed on artificial diet containing snowdrop lectin (Galanthus nivalis agglutinin; GNA), which has been shown to be toxic towards this insect pest. In addition to decreasing survival, the lectin affected development, reducing the growth rate of nymphs by approximately 50% when present at a concentration of 5.3&mgr;M. Immunolocalisation studies showed that lectin binding was concentrated on the luminal surface of the midgut epithelial cells within the planthopper, suggesting that GNA binds to cell surface carbohydrate moieties in the gut. Immunolabelling at a lower level was also observed in the fat bodies, the ovarioles, and throughout the haemolymph. These observations suggest that GNA is able to cross the midgut epithelial barrier, and pass into the insect's circulatory system, resulting in a systemic toxic effect. Electron microscope studies showed morphological changes in the midgut region of planthoppers fed on a toxic dose of GNA, with disruption of the microvilli brush border region. No significant proteolytic degradation of GNA was observed either in the gut or honeydew of planthoppers fed on lectin-containing diet. The presence of glycoproteins which bind GNA in the gut of the brown planthopper was confirmed using digoxigen-labeled lectins to probe blots of extracted gut polypeptides.  相似文献   

18.
Plasmodium gallinaceum ookinetes adhered to Aedes aegypti midgut epithelia when purified ookinetes and isolated midguts were combined in vitro. Ookinetes preferentially bound to the microvillated luminal surface of the midgut, and they seemed to interact with three types of structures on the midgut surface. First, they adhered lo and migrated through a network-like matrix, which we have termed microvilli-associated network, that covers the surface of the microvilli. This network forms on the luminal midgut surface in response to blood or protein meals. Second, the ookinetes bound directly to the microvilli on the surface of the midgut and were occasionally found immersed in the thick microvillar layer. Third, the ookinetes associated with accumulations of vesicular structures found interspersed between the microvillated cells of the midgut. The origin of these vesicular structures is unknown, but they correlated with the surface of midgut cells invaded by ookinetes as observed by TEM. After binding to the midgut. ookinetes underwent extensive morphological changes: they frequently developed one or more annular constrictions, and their surface roughened considerably, suggesting that midgut components remain bound to the parasite surface. Our observations suggest that, in a natural infection, the ookinete interacts in a sequential manner with specific components of the midgut surface. Initial binding to the midgut surface may activate the ookinete and cause morphological changes in preparation for invasion of the midgut cells.  相似文献   

19.
To identify the means by which phytohemagglutinin (PHA) exerts its toxicity on the potato leafhopper, four different methods (thick and semi-thin sectioning combined with immunofluorescent staining, in vitro receptor autoradiography, and immunoelectron microscopy) were used to elucidate the PHA target tissue, binding site, and its effects on this tissue. Sixteen 1- or 2-day-old female potato leafhoppers were fed for 36 h on each of three treatments: a control, diet or a diet containing either the PHA-E subunit or the PHA-L subunit. The PHA-E subunit, but not PHA-L, had previously been shown to be lethal. The insects were then prepared for both light and confocal microscopy. Analysis of images showed that PHA bound only to the surface of midgut epithelial cells of the potato leafhopper. PHA-E caused severe disruption, disorganization, and elongation of the brush border microvilli, and swelling of the epithelial cells into the lumen of the gut, leading to complete closure of the lumen. Furthermore, PHA-E stimulated the division of midgut epithelial cell nuclei, leading to two nuclei in each cell. Nuclei later elongated and degraded. In contrast, PHA-L had little effect on the epithelial cells of the midgut. It did not strongly bind to the surface of epithelial cells and caused much less disruption of brush-border microvilli, less disorganization of the cells and less elongation of nuclei. Strong binding of PHA occurred solely on the cell membrane of the brush border microvilli of epithelial cells. In contrast, the controls (i.e., midgut tissue, blocking agent, PHA, and antibodies) showed that midgut tissue was not autofluorescent and showed no fluorescent binding signal. Analysis of both bright- and dark-field images obtained by autoradiography and immunoelectron microscopy confirmed these findings.  相似文献   

20.
The sugarcane borer, Diatraea saccharalis Fabricius, is a pest to sugarcane and many other crops. This work aims to characterize morphological variability in the epithelial cells (columnar, goblet and regenerative) along the midgut of D. saccharalis larvae. Fragments of the midgut (anterior, middle and posterior regions) were fixed and processed by light and scanning electron microscopy. There are both cytochemical and ultrastructural differences in the morphology of the epithelial cells, depending on their localization along the midgut. The apical surface of columnar cells shows an increase in both number and size of the apical protrusions from the anterior to the posterior midgut regions. There is an increase in the amount of PAS-positive (Periodic Acid-Schiff Reaction) granules detected in the cytoplasm of both the columnar and regenerative cells, from the anterior to the posterior region. The goblet cell apical surface is narrow in the anterior region, and enlarged in the posterior midgut; the chamber's cytoplasm extrusion are small and thin at the apical cavity surface, being thicker, longer and more numerous at the basal portion of the cavity. Our results suggest that the sugarcane borer midgut has two morphologically different regions, the anterior and the posterior; the middle region is a transitional region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号