首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Resveratrol has been shown to protect against oxidative stress through modulating antioxidant capacity. In this study, we investigated resveratrol-mediated induction of glutathione (GSH) and glutamate cysteine ligase (GCL), and the combined effect of resveratrol and 4-hydroxynonenal (HNE) on GSH synthesis in cultured HBE1 human bronchial epithelial cells. Resveratrol increased GSH and the mRNA contents of both the catalytic (GCLC) and modulatory subunit (GCLM) of GCL. Combined HNE and resveratrol treatment increased GSH content and GCL mRNAs to a greater extent than either compound did alone. Compared to individual agent, combining exposure to HNE and resveratrol also showed more protection against cell death caused by oxidative stress. These effects of combined exposure were additive rather than synergistic. In addition, Nrf2 silencing significantly decreased the combined effect of HNE and resveratrol on GCL induction. Our data suggest that resveratrol increases GSH and GCL gene expression and that there is an additive effect on GSH synthesis between resveratrol and HNE. The results also reveal that Nrf2-EpRE signaling was involved in the combined effects.  相似文献   

3.
Regulation of glutathione in inflammation and chronic lung diseases   总被引:4,自引:0,他引:4  
Rahman I 《Mutation research》2005,579(1-2):58-80
  相似文献   

4.
5.
Cytoprotective enzyme elevation through the nuclear erythroid 2 p45‐related factor 2 (Nrf2)–Kelch‐like ECH‐associated protein 1/antioxidant response element pathway has been promulgated for cancer prevention. This study compares the redox insult and sustained cytoprotective enzyme elevation by organoselenocompounds and sulforaphane (SF) in lung cells. SF elicited a rise in reactive oxygen species (ROS) and drop in glutathione (GSH) at 2 h; nuclear accumulation of Nrf2 at 4 h; and a GSH rebound and elevation in NAD(P)H quinone oxidoreductase (NQO1), thioredoxin reductase (TR1), and glutamate–cysteine ligase (GCL) at 24 h. Selenocystine (SECY) elicited a similar 24 h response, despite lesser earlier time‐point changes. 2‐Cyclohexylselenazolidine‐4‐carboxylic acid effects were similar to SECY's but with a larger Nrf2 change and the largest 24 h increase in GSH, GCL, TR1, and NQO1 of any compound investigated. Selenomethionine elicited a similar acute rise in ROS, but lesser depletion of GSH, no 4 h increase in nuclear Nrf2, only minor 24 h elevations in TR1 and NQO1, and a GCL elevation insufficient to elevate GSH. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:344–353, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21417  相似文献   

6.
The synthetic organoselenium agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) and its glutathione (GSH) conjugate (p-XSeSG) are potent chemopreventive agents in several preclinical models. p-XSC is also an effective inducer of GSH in mouse lung. Our objectives were to test the hypothesis that GSH induction by p-XSC occurs through upregulation of the rate-limiting GSH biosynthetic enzyme glutamylcysteine ligase (GCL), through activation of antioxidant response elements (AREs) in GCL genes via activation of nuclear factor-erythroid 2-related factor 2 (Nrf2). p-XSC feeding (10 ppm Se) increased GSH (230%) and upregulated the catalytic subunit of GCL (GCLc) (55%), extracellular-related kinase (220%), and nuclear Nrf2 (610%) in lung but not liver after 14 days in the rat (P<0.05). Similarly, p-XSeSG feeding (10 ppm) induced lung GCLc (88%) and GSH (200%) (P<0.05), whereas the naturally occurring selenomethionine had no effect. Both p-XSC and p-XSeSG activated a luciferase reporter in HepG2 ARE-reporter cells up to threefold for p-XSC and greater than or equal to fivefold for p-XSeSG. Luciferase activation by p-XSeSG was associated with enhanced levels of GSH, GCLc, and nuclear Nrf2, which were significantly reduced by co-incubation with short interfering RNA targeting Nrf2. The dependence of GCL induction on Nrf2 was confirmed in Nrf2-deficient mouse embryonic fibroblasts, in which p-XSeSG induced GCL subunits in wild-type but not in Nrf2-deficient cells (P<0.05). These results indicate that p-XSC may act through the Nrf2 pathway in vivo and that p-XSeSG is the putative metabolite responsible for such activation, thus offering p-XSeSG as a less toxic, yet highly efficacious, inducer of GSH.  相似文献   

7.
S C Lu 《FASEB journal》1999,13(10):1169-1183
  相似文献   

8.
9.
Epidemiological and laboratory studies have highlighted the potent chemopreventive effectiveness of both dietary selenium and cruciferous vegetables, particularly broccoli. Sulforaphane (SFN), an isothiocyanate, was identified as the major metabolite of broccoli responsible for its anti-cancer properties. An important mechanism for SFN chemoprevention is through the enhancement of glutathione (GSH), the most abundant antioxidant in animals and an important target in chemoprevention. Enhancement of GSH biosynthetic enzymes including the rate-limiting glutamate cysteine ligase (GCL), as well as other Phase II detoxification enzymes results from SFN-mediated induction of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway. While isothiocyanate compounds such as SFN are among the most potent Nrf2 inducers known, we hypothesized that substitution of sulfur with selenium in the isothiocyanate functional group of SFN would result in an isoselenocyanate compound (SFN-isoSe) with enhanced Nrf2 induction capability. Here we report that SFN-isoSe activated an ARE-luciferase reporter in HepG2 cells more potently than SFN. It was also found that SFN-isoSe induced GCL and GSH in MEF cells in an Nrf2-dependent manner. Finally, we provide evidence that SFN-isoSe was more effective in killing HepG2 cancer cells, yet was less toxic to non-cancer MEF cells, than SFN.These data support our hypothesis, and suggest that SFN-isoSe and potentially other isoselenocyanates may be highly effective chemoprotective agents in vivo due to their ability to induce Nrf2 with low toxicity in normal cells and high efficiency at killing cancer cells.  相似文献   

10.
Increasing evidence suggests an adaptive response induced by reactive oxygen species and other physiologically existing oxidative stimuli. We have recently reported that a variety of lipid peroxidation products at sublethal concentrations could induce adaptive response and enhance PC12 cell tolerance, although the detailed underlying molecular mechanisms have not been clearly clarified. In the present study, we found that both 7-hydroxycholesterol (7-OHCh) and 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) at sublethal concentrations significantly increased the cellular GSH as well as the enzyme activity of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis. Depletion of cellular GSH by buthionine sulfoximine completely abolished the adaptive response. Interestingly, treatment with 15d-PGJ2 significantly increased the gene expression of both subunits of GCL in an NF-E2-related factor 2 (Nrf2)-dependent manner, whereas neither 7-OHCh induced any considerable changes on the GCL gene expression nor did the Nrf2-small interfering RNA treatment exert any appreciable effects on the GSH elevation and subsequent adaptive response induced by 7-OHCh. These results demonstrate that the adaptive response induced by both 7-OHCh and 15d-PGJ2 is mediated similarly through the up-regulation of GSH but via different mechanisms.  相似文献   

11.
4-Hydroxynonenal (HNE) is one of the major end-products of lipid peroxidation and is increased in response to cellular stress and in many chronic and/or inflammatory diseases. HNE can in turn function as a potent signaling molecule to induce the expression of many genes including glutamate cysteine ligase (GCL), the rate-limiting enzyme in de novo glutathione (GSH) biosynthesis. GSH, the most abundant nonprotein thiol in the cell, plays a key role in antioxidant defense. HNE exposure causes an initial depletion of GSH due to formation of conjugates with GSH, followed by a marked increase in GSH resulting from the induction of GCL. GCL is a heterodimeric protein with a catalytic (or heavy, GCLC) subunit and a modulatory (or light, GCLM) subunit. HNE-mediated induction of both GCL subunits and mRNAs has been reported in rat and human cells in vitro; however, the mechanisms or the signaling pathways mediating the induction of Gclc and Gclm mRNAs by HNE differ between rat and human cells. Activation of the ERK pathway is involved in GCL regulation in rat cells while both the ERK and the JNK pathways appear to be involved in human cells. Downstream, MAPK activation leads to increased AP-1 binding, which mediates GCL induction. Some studies suggest a role for the EpRE element as well. As the concentrations of HNE used in all of the studies reviewed are comparable to what may be found in vivo, this makes the findings summarized in this review potentially relevant to GCL regulation in human health and disease.  相似文献   

12.
Butein and phloretin are chalcones that are members of the flavonoid family of polyphenols. Flavonoids have well-known antioxidant and anti-inflammatory activities. In rat primary hepatocytes, we examined whether butein and phloretin affect tert-butylhydroperoxide (tBHP)-induced oxidative damage and the possible mechanism(s) involved. Treatment with butein and phloretin markedly attenuated tBHP-induced peroxide formation, and this amelioration was reversed by l-buthionine-S-sulfoximine [a glutamate cysteine ligase (GCL) inhibitor] and zinc protoporphyrin [a heme oxygenase 1 (HO-1) inhibitor]. Butein and phloretin induced both HO-1 and GCL protein and mRNA expression and increased intracellular glutathione (GSH) and total GSH content. Butein treatment activated the ERK1/2 signaling pathway and increased Nrf2 nuclear translocation, Nrf2 nuclear protein-DNA binding activity, and ARE-luciferase reporter activity. The roles of the ERK signaling pathway and Nrf2 in butein-induced HO-1 and GCL catalytic subunit (GCLC) expression were determined by using RNA interference directed against ERK2 and Nrf2. Both siERK2 and siNrf2 abolished butein-induced HO-1 and GCLC protein expression. These results suggest the involvement of ERK2 and Nrf2 in the induction of HO-1 and GCLC by butein. In an animal study, phloretin was shown to increase GSH content and HO-1 expression in rat liver and decrease carbon tetrachloride-induced hepatotoxicity. In conclusion, we demonstrate that butein and phloretin up-regulate HO-1 and GCL expression through the ERK2/Nrf2 pathway and protect hepatocytes against oxidative stress.  相似文献   

13.
GSH is synthesized sequentially by glutamate-cysteine ligase (GCL) and GSH synthase and defends against oxidative stress, which promotes hepatic stellate cell (HSC) activation. Changes in GSH synthesis during HSC activation are poorly characterized. Here, we examined the expression of GSH synthetic enzymes in rat HSC activation and reversion to quiescence. Expression of the GCL catalytic subunit (GCLC) fell during HSC activation and increased when activated HSCs revert back to quiescence. Blocking the increase in GCLC expression kept HSCs in an activated state. Activated HSCs have higher nuclear levels and binding activity of MafG to the antioxidant response element (ARE) of GCLC but lower Nrf2/MafG heterodimer binding to the ARE. Quiescent HSCs have a lower nuclear MafG level but higher Nrf2/MafG heterodimer binding to ARE. This occurred because of enhanced sumoylation of Nrf2 and MafG by SUMO-1, which promoted Nrf2 binding to ARE and heterodimerization with MafG. In vivo, knockdown of GCLC exacerbated bile duct ligation-induced liver injury and fibrosis. Ursodeoxycholic acid and S-adenosylmethionine are anti-fibrotic in bile duct ligation, but this effect was nearly lost if GCLC induction was blocked. In conclusion, sumoylation of Nrf2 and MafG enhances heterodimerization and increases GCLC expression, which keeps HSCs in a quiescent state. Antifibrotic agents require activation of GCLC to fully exert their protective effect.  相似文献   

14.
On liver injury, quiescent hepatic stellate cells (HSC), the most relevant cell type for hepatic fibrogenesis, become active, characterized by enhanced cell growth and overproduction of extracellular matrix (ECM). Oxidative stress facilitates HSC activation and the pathogenesis of hepatic fibrosis. Glutathione (GSH) is the most important intracellular antioxidant. We previously showed that curcumin, the yellow pigment in curry from turmeric, significantly inhibited HSC activation. The aim of this study is to elucidate the underlying mechanisms. It is hypothesized that curcumin might inhibit HSC activation mainly by its antioxidant capacity. Results from this study demonstrate that curcumin dose and time dependently attenuates oxidative stress in passaged HSC demonstrated by scavenging reactive oxygen species and reducing lipid peroxidation. Curcumin elevates the level of cellular GSH and induces de novo synthesis of GSH in HSC by stimulating the activity and gene expression of glutamate-cysteine ligase (GCL), a key rate-limiting enzyme in GSH synthesis. Depletion of cellular GSH by the inhibition of GCL activity using L-buthionine sulfoximine evidently eliminates the inhibitory effects of curcumin on HSC activation. Taken together, our results demonstrate, for the first time, that the antioxidant property of curcumin mainly results from increasing the level of cellular GSH by inducing the activity and gene expression of GCL in activated HSC in vitro. De novo synthesis of GSH is a prerequisite for curcumin to inhibit HSC activation. These results provide novel insights into the mechanisms of curcumin as an antifibrogenic candidate in the prevention and treatment of hepatic fibrosis.  相似文献   

15.
The nature of the mechanisms underlying the age-related decline in glutathione (GSH) synthetic capacity is at present unclear. Steady-state kinetic parameters of mouse liver GCL (glutamate-cysteine ligase), the rate-limiting enzyme in GSH synthesis, and levels of hepatic GSH synthesis precursors from the trans-sulfuration pathway, such as homocysteine, cystathionine and cysteine, were compared between young and old C57BL/6 mice (6- and 24-month-old respectively). There were no agerelated differences in GCL V(max), but the apparent K(m) for its substrates, cysteine and glutamate, was higher in the old mice compared with the young mice (approximately 800 compared with approximately 300 microM, and approximately 710 compared with 450 microM, P<0.05 for cysteine and glutamate in young and old mice respectively). Amounts of cysteine, cystathionine and Cys-Gly increased with age by 91, 24 and 28% respectively. Glutathione (GSH) levels remained unchanged with age, whereas GSSG content showed an 84% increase, suggesting a significant pro-oxidizing shift in the 2GSH/GSSG ratio. The amount of the toxic trans-sulfuration/glutathione biosynthetic pathway intermediate, homocysteine, was 154% higher (P<0.005) in the liver of old mice compared with young mice. The conversion of homocysteine into cystathionine, a rate-limiting step in trans-sulfuration catalysed by cystathionine beta-synthase, was comparatively less efficient in the old mice, as indicated by cystathionine/homocysteine ratios. Incubation of tissue homogenates with physiological concentrations of homocysteine caused an up to 4.4-fold increase in the apparent K(m) of GCL for its glutamate substrate, but had no effect on V(max). The results suggest that perturbation of the catalytic efficiency of GCL and accumulation of homocysteine from the trans-sulfuration pathway may adversely affect de novo GSH synthesis during aging.  相似文献   

16.
Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-A resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.  相似文献   

17.
18.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

19.
20.
Glutathione (GSH) is important in free radical scavenging, maintaining cellular redox status, and regulating cell survival in response to a wide variety of toxicants. The rate-limiting enzyme in GSH synthesis is glutamate-cysteine ligase (GCL), which is composed of catalytic (GCLC) and modifier (GCLM) subunits. To determine whether increased GSH biosynthetic capacity enhances cellular resistance to tumor necrosis factor-alpha- (TNF-alpha-) induced apoptotic cell death, we have established several mouse liver hepatoma (Hepa-1) cell lines overexpressing GCLC and/or GCLM. Cells overexpressing GCLC alone exhibit modest increases in GCL activity, while cells overexpressing both subunits have large increases in GCL activity. Importantly, cells overexpressing both GCL subunits exhibit increased resistance to TNF-induced apoptosis as judged by a loss of redox potential; mitochondrial membrane potential; translocation of cytochrome c to the cytoplasm; and activation of caspase-3, caspase-8, and caspase-9. Analysis of the effects of TNF on these parameters indicates that maintaining mitochondrial integrity mediates this protective effect in GCL-overexpressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号