首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate how various concentrations of serum prolactin (PRL) influence the priming effect of luteinizing hormone releasing hormone (LH-RH) on the pituitary gland, 24 women with various blood PRL concentrations received intravenous injections of 100 micrograms of synthetic LH-RH twice at an interval of 60 minutes and their serum LH and follicle-stimulating hormone (FSH) were measured and analysed. In the follicular phase with a normal PRL concentration (PRL less than 20 ng/ml, n = 6), marked first peaks of the two hormones following the first LH-RH stimulation and enhanced second peaks after the second LH-RH administration were observed, indicating a typical priming effect of LH-RH on gonadotropins, though the second response of FSH was more moderate than that of LH. In hyperprolactinemia, in which the serum PRL concentration was higher than 70 ng/ml (n = 13), the basal concentration of gonadotropins was not significantly changed but the priming effect of LH-RH on LH and FSH was significantly decreased (p less than 0.01). No marked second peaks of LH and FSH were observed, suggesting an inhibitory effect of hyperprolactinemia on the second release of LH and FSH. In contrast, this effect was restored in a group of women whose serum PRL concentration was between 30 and 50 ng/ml (n = 5). Furthermore, enhanced second peaks of both LH and FSH were noted after successful bromocriptine therapy reduced hyperprolactinemia (PRL greater than 70 ng/ml) to less than 25 ng/ml (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The responses of the adenohypophyseal hormones to metoclopramide (MCP) were evaluated in hyperprolactinemic women with various radiological findings on the sella turcica. Serum PRL concentrations significantly increased after MCP administration in normal women, hyperprolactinemic patients with normal sella and patients with microadenoma, but not in macroadenoma patients with and without suprasellar expansion (SSE). The PRL response to MCP administration was significantly lower in hyperprolactinemic patients than in normal women. Serum TSH concentrations significantly increased after MCP administration in each group of subjects. The TSH response to MCP was significantly higher in patients with normal sella and patients with microadenoma than in normal women. However, the responses of PRL and TSH to MCP were not significantly different between patients with normal sella and patients with microadenoma. Therefore, they were not considered useful in distinguishing tumorous from nontumorous hyperprolactinemia. Serum LH concentrations significantly increased after MCP administration in patients with normal sella, patients with microadenoma and macroadenoma patients without SSE, but not in normal women or macroadenoma patients with SSE. The LH response to MCP was significantly higher in patients with microadenoma than in patients with normal sella. Serum FSH concentrations significantly increased after MCP administration only in patients with microadenoma. The different responses of the adenohypophyseal hormones to MCP in hyperprolactinemic women with various radiological findings on the sella turcica may be explained by the difference in the hypothalamic dopamine activity and in the impairment of the hypothalamic-pituitary system due to pituitary tumor.  相似文献   

3.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

4.
Prolactin dynamic was investigated in 43 premenopausal patients with primary empty sella (PES) diagnosed by pneumoencephalography and CT scan. Only normoprolactinemic patients were included in this study. Basal PRL levels ranged from 4 to 25 ng/ml. PRL responses to TRH (200 micrograms i.v.) and metoclopramide (MCP, 10 mg p.o.) were not significantly different from those in normal subjects, although a trend toward higher responses was present in PES patients. The administration of nomifensine (NOM, 200 mg p.o.) induced a PRL decrease, which was not significantly different from that in normal subjects. However, a sequential stimulation with TRH plus MCP (1 h after TRH administration) induced an exaggerated PRL increase which was significantly different from that in normal subjects. The peak PRL responses after stimulation were not significantly correlated with estradiol levels or FSH/LH ratios in our patients. The influence of body weight was also excluded on the basis of the responses observed in 8 obese control subjects that were significantly lower than in PES patients. Moreover, in 19 patients we studied the intracranial pressure (ICP) through an indwelling catheter inserted into the lumbar subarachnoid space. ICP was normal in 5 patients and elevated in 14 patients. When we compared PRL dynamics in patients with normal or elevated ICP, a significant difference was noted between the percentage of PRL decrease after NOM, that was lower and delayed in patients with increased ICP, suggesting an influence of ICP on neuronal dopamine reuptake. In conclusion, an augmented PRL reserve is present in premenopausal patients with PES. A correlation can be found between ICP and the function of dopaminergic neurons controlling lactotroph cells.  相似文献   

5.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

6.
To investigate the effects of acute hyperprolactinemia on the 24 h LH pulsatile pattern, 11 women in the early follicular phase (EF, days 3 and 4) and 8 postmenopausal women (PMW) were studied before and during administration of metoclopramide, a dopamine receptor antagonist. Sequential 24 h infusions of either metoclopramide (MCP, 30 micrograms/kg/h) or normal saline were conducted and pulsatile LH activity assessed for 48 hrs. In both EF women and PMW, a prompt (within 90 min, p less than 0.001) and sustained (greater than 45 micrograms/L, p less than 0.001) release of PRL was induced by MCP infusions. MCP-induced hyperprolactinemia failed to modify the LH pulsatile activity in both EF women and PMW. These observations suggest that acute hyperprolactinemia due to dopaminergic blockade has no discernible effect on LH pulsatility and that the reduced LH pulse frequency observed in association with endogenous hyperprolactinemia may result from different neuroendocrine mechanism(s) and/or is time dependent.  相似文献   

7.
Growth hormone (GH) and prolactin (PRL) responses after TRH administration were studied in 31 women presenting with the clinical, biochemical and ultrasonographic characteristics of the polycystic ovarian (PCO) syndrome; their results were compared with those of 20 normally menstruating women investigated during the early follicular phase of the cycle. Based on the GH responses two PCO subgroups were observed: (a) nonresponders (n = 16) who showed delta max GH responses (0.7 +/- 0.27 ng/ml, x +/- SE) similar to those of the normals (0.97 +/- 0.20 ng/ml), and (b) responders (n = 15), 48.4% of the PCO patients who showed a paradoxical increase in GH levels (delta max GH, 18.0 +/- 1.96 ng/ml) following thyrotropin-releasing hormone (TRH) administration significantly higher than those observed either in nonresponder PCO patients or in normals. Furthermore, basal GH levels were found to be significantly higher in the responder PCO subgroup (5.65 +/- 0.75 ng/ml) compared to either nonresponders (1.58 +/- 0.21 ng/ml) or normals (1.8 +/- 0.18 ng/ml). However, no correlation was found between basal GH levels and delta max GH responses observed. Additionally, basal PRL and delta max PRL levels following TRH administration did not differ either between the two PCO subgroups or those observed in normal controls. delta 4A, T and E2 levels were similar between the two PCO subgroups. No correlation was found between the delta max GH responses to delta max PRL or the post-luteinizing hormone-releasing hormone stimulation test delta max luteinizing hormone:follicle-stimulating hormone ratio observed or to steroid levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To clarify the effects of cyclosporine A (CsA) on the secretion of serum thyrotropin (TSH), prolactin (PRL), luteinizing hormone (LH) and follicular stimulating hormone (FSH), we performed TRH and LH-RH testing in 4 patients with the nephrotic syndrome before and after the administration of CsA, 6 mg/kg/day for 4 to 12 weeks. Prior to CsA all patients responded normally to TRH with respect to TSH and PRL secretion. Two patients showed normal response of LH and FSH to LH-RH stimulation while the response in 2 other patients, who were both menopausal, was exaggerated. By the third or fourth week of CsA administration the basal and peak TSH and PRL values declined significantly in all patients in response to TRH stimulation while those of LH and FSH showed only a modest decrease in response to LH-RH stimulation. Two to 4 weeks after the cessation of CsA the response of TSH, PRL and FSH returned to the pretreatment level. These observations suggest that: 1) CsA exerts an inhibitory effect on the secretion of at least TSH and PRL in humans, and 2) the effect of CsA on the pituitary may be partially reversible after the cessation of the therapy.  相似文献   

9.
The present study was designed to examine the effect of low-dose dopamine (DA) infusion rates (0.02 and 0.1 microgram/kg X min) on both basal and TRH-stimulated prolactin release in normal and hyperprolactinemic individuals. Sixteen normally menstruating women in the early follicular phase of a cycle and 23 hyperprolactinemic patients were studied. 0.1 microgram/kg X min DA was infused in 8 normal women and 15 patients with pathological hyperprolactinemia, while 8 normal controls and 8 patients received 0.02 microgram/kg X min DA TRH (200 micrograms, i.v.) was administered alone and at the 180th min of the 5-hour DA infusion in all controls and patients. A significant reduction in serum PRL levels, which was similar in normal women (-59.5 +/- 4.0%, mean +/- SE) and hyperprolactinemic patients (-48.2 +/- 5.5) was observed in response to 0.1 microgram/kg X min DA. In normal cycling women DA infusion significantly (P less than 0.02) reduced the PRL response to TRH with respect to the basal TRH test (delta PRL 45.0 +/- 7.0 vs. 77.9 +/- 15.4 ng/ml). On the contrary, the PRL response to TRH was significantly higher during 0.1 microgram/kg X min DA than in basal conditions in hyperprolactinemic patients, both in absolute (delta PRL 91.8 +/- 17.6 vs. 38.4 +/- 6.8, P less than 0.03) and per cent (198.5 +/- 67.6 vs. 32.1 +/- 7.5, P less than 0.02) values. A normal PRL response to TRH, arbitrarily defined as an increase greater than 100% of baseline, was restored in 11 out of 15 previously unresponsive hyperprolactinemic patients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To Clarify the relationship between the time interval and pituitary Luteinizing hormone (LH), Follicular stimulation hormone (FSH) and prolactin (PRL) secretion function under LHRH-TRH stimulation, 4 mature female baboons were used. Two consecutive LHRH (100 micrograms)-TRH (250 micrograms) stimulations with a 60 min interval between them was carried out in the early follicular phase, late follicular phase and mid luteal phase in the same baboon in the first menstrual cycle, then carried out with a 120 min interval between tests in the third menstrual cycle. The LH, FSH and PRL were measured by specific radioimmunoassay. The PRL maximum response to the first bolus of TRH was higher than maximum response to the second bolus of TRH. The PRL maximum response to the second TRH at a 120 min interval was higher than the maximum response to the second TRH at a 60 min interval. It seems that the TRH had the dominant effect on PRL releasing but not on PRL Priming. The maximum LH response to the second bolus of LHRH was higher than the maximum response to the first bolus of LHRH. The LH maximum response to the second bolus of LHRH at a 60 min interval was greater than the maximum response at a 120 min interval in the follicular phase but it was the reverse in the luteal phase. The FSH response to the second LHRH was different from the LH response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Synthetic thyrotropin-releasing hormone (TRH) tartrate monohydrate was administered by rapid intravenous injection to nine normal males. Plasma thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured before and at selected periods after TRH injection. The mean plasma TSH value immediately prior to TRH injection was 3.5 muU/ml and the level 15 min after injection was 14.8 muU/ml. The mean plasma LH value immediately prior to TRH injection was 8.0 mIU/ml and the level 15 min after injection was 15.0 mIU/ml. The latter elevation was statistically significant (p less than 0.01), although it was just above the upper normal range. The mean plasma FSH value immediately prior to TRH injecion was 7.7 mIU/ml, and a significant difference was not observed after TRH administration. These results revealed that synthetic TRH tartrate monohydrate influenced the release of LH from the anterior pituitary.  相似文献   

12.
To verify the role of dopaminergic mechanisms in the control of gonadotropin secretion in normal and hyperprolactinemic women, we examined the gonadotropin response to GnRH (100 micrograms i.v.) administration in both basal conditions and during low-dose dopamine (DA, 0.1 microgram/kg/min) infusion. Hyperprolactinemic women, either with microadenoma or without radiological signs of pituitary tumor, showed significantly enhanced LH and FSH responses to GnRH in comparison with normal cycling women. 0.1 microgram/kg/min DA infusion did not result in any appreciable suppression of serum gonadotropin levels but significantly reduced the LH and FSH responses to GnRH in both normal and amenorrheic hyperprolactinemic women. Although both LH and FSH levels remained higher in hyperprolactinemic patients than in normal women after GnRH, the gonadotroph's sensitivity to DA inhibition was normal in the hyperprolactinemic group, as both control subjects and patients with hyperprolactinemic showed similar per cent suppression of GnRH-stimulated gonadotropin release during DA. These data confirm that hypothalamic DA modulates the gonadotroph's responsiveness to GnRH. The increased LH and FSH responses to GnRH in hyperprolactinemic patients and their reduction during low-dose DA infusion seem to indicate that endogenous DA inhibition of pituitary gonadotropin release is reduced rather than enhanced in women with pathological hyperprolactinemia.  相似文献   

13.
To investigate whether an enhanced dopamine (DA) inhibition on pituitary thyrotrophs and gonadotrophs may account for the abnormal TSH and LH dynamics in pathological hyperprolactinemia, we examined the effect of an acute lysis of the putative DA overinhibition, as obtained with continuous domperidone (DOM) infusion, on both basal and TRH-GnRH stimulated PRL, TSH and LH release in both normal cycling women and patients with pathological hyperprolactinemia. The effect of TRH-GnRH administration was also examined in women with DA-antagonist induced hyperprolactinemia, in order to evaluate the effect of a chronic lack of the physiological DA inhibition on pituitary hormone dynamics. Patients with both pathological and DA-antagonist induced hyperprolactinemia displayed an evident TSH and LH hyper-responsiveness to TRH-GnRH. The PRL response was reduced in the former but enhanced in the latter group. Domperidone infusion resulted in a marked increase in serum PRL levels in normal cycling women, but not in patients with pathological hyperprolactinemia. The abolition of the putative DA-overinhibition at the pituitary level with DOM infusion in patients with pathological hyperprolactinemia was followed by a slight increase in basal TSH output but did not modify the TSH and LH hyperresponsiveness to TRH-GnRH. The similarities in TSH and LH dynamics between patients with pathological and DA-antagonist induced hyperprolactinemia and the ineffectiveness of DOM infusion in modifying the TSH and LH hyper-responses to TRH-GnRH in the former group, seem to exclude the widely accepted idea that endogenous DA overactivity is responsible for the abnormal thyrotroph and lactotroph dynamics in women with hyperprolactinemic amenorrhea.  相似文献   

14.
The hormonal response to LHRH and TRH was evaluated in three groups of male diaetics. Five patients were receiving therapy with the hypoglycemic agent glibenclamide, five were on NPH insulin and five were on dietary therapy alone. When compared to controls, the latter two groups had intact gonadotropin responses to LHRH. Despite normal basal gonadotropin levels, however, the group receiving glibenclamide therapy showed significantly exaggerated LH and FSH responses to LHRH. Both basal PRL and TSH levels, as well as the responses to TRH were normal in all three groups. These results indicate that LH, FSH, TSH and PRL secretion is intact in uncomplicated diabetes mellitus. The exaggerated LH and FSH responses to LHRH in the glibenclamide treated subjects are probably related to primary gonadal involvement; alternatively, there may be augmented pituitary gonadotropin secretion in this group.  相似文献   

15.
In order to elucidate the relationship between prolactin (PRL) levels and corpus luteum function in humans, assessment of temporal relationship between levels of PRL, LH, FSH, estradiol and progesterone was made in eleven normal cycling women and six short luteal women. All hormones were determined by specific radioimmunoassay. The mean PRL level in the luteal phase was higher than that in the follicular phase in normal women. On the other hand, no difference mean was seen between the PRL levels of follicular and luteal phases in short luteal women. In addition, follicular and luteal phase secretion of PRL in the short luteal phase (SLP) was lower than that in the normal control. LH and FSH in the follicular and luteal phases, estradiol secretion in the late follicular and early to mid-luteal phases in SLP were also lower than those in the control. These observations were consistent with the hypothesis that SLP is a sequel to aberrant folliculogenesis. In addition, it is inferred that low PRL levels in the SLP might be due to inadequate augmentation by estrogen, rather than giving PRL any positive controlling role in the maintenance of corpus luteum function.  相似文献   

16.
We report the effectiveness of bromocriptine therapy in resolving the abnormal responses of plasma FSH and LH to TRH in a 70-year-old male with FSH-secreting pituitary macroadenoma who had unsuccessful transsphenoidal pituitary surgery. In the pre-treatment and post-operative periods, respectively, basal plasma levels of FSH were increased to 88.7 and 65.6 mIU/ml (normal range; 8.5-32.4) but those of plasma LH were normal being 7.0 and 4.1 mIU/ml; (normal range; 4.1 to 14.0). The responses of plasma FSH and LH to LHRH were exaggerated and their paradoxical responses to TRH were highly suggested. During the bromocriptine therapy, the basal level of plasma FSH was normalized and that of plasma LH remained normal. The magnitude of FSH and LH responses to LHRH decreased and their paradoxical responses to TRH were completely resolved.  相似文献   

17.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

18.
The role of pituitary and sexual hormones in 21 patients with chronic renal failure (CRF) and related impotence and loss of libido who were being treated by hemodialysis and in 15 normal male controls has been studied. In both groups the serum levels of FSH, LH and TSH, PRL before and after injection of both LHRH and TRH were measured as well as the basal levels of Testosterone (T) and Estradiol (E2). The results show similar values for testosterone in both groups and statistically significant higher basal values for FSH, LH, TSH and PRL and lower basal values for E2 in CRF patients.  相似文献   

19.
It has been demonstrated that hyperprolactinemia is sometimes present even in patients with idiopathic diabetes insipidus (DI). In this study, we examined the responses of serum prolactin (PRL) to hypertonic saline infusion and TRH injection in 11 patients with idiopathic DI diagnosed by clinical examinations. Serum sodium in these patients (147.5 +/- 3.2 mEq/L) was significantly higher at baseline than in normal subjects (139.7 +/- 2.4 mEq/L). The plasma arginine vasopressin (AVP) level was significantly lower in DI (0.42 +/- 0.24 pg/ml) at baseline than in normal subjects (2.53 +/- 1.03 pg/ml). However, the serum PRL level in both groups did not differ significantly except in one patient with idiopathic DI (35.6 ng/ml). There was no significant correlation between the basal serum sodium and basal serum PRL in either group. After an infusion of hypertonic saline, the serum sodium level gradually increased to 155.6 +/- 3.4 mEq/L in DI and to 146.5 +/- 4.3 mEq/L in the normal subjects. However, this increase did not affect PRL secretion in either group. PRL response to TRH was essentially normal in all patients with idiopathic DI. These results indicate that the secretion of PRL is not generally affected by chronic mild hypernatremic hypovolemia in the patients with idiopathic DI.  相似文献   

20.
Four-day-old pituitary monolayer cultures were incubated with various hypothalamic releasing hormones. Rat hypothalamic extract stimulated the release of LH, FSH, and PRL by these cultures in a dose-related fashion. Synthetic LH-RH stimulated the release of LH and FSH but not of PRL. Synthetic TRH increased the release of PRL but had no effect on LH or FSH. At 10(-8) M, somatostatin did not affect any of the three adenohypophyseal hormones. Incubation with DBcAMP or theophylline also stimulated PRL release without any detectable effect on LH and FSH release. These data suggest the involvement of cyclic AMP--adenylate cyclase system in the mechanism of PRL release, but their involvement in gonadotropin release requires further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号