首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human insulin is a double-chain peptide that is synthesized in vivo as a single-chain human proinsulin (HPI). We have investigated the disulfide-forming pathway of a single-chain porcine insulin precursor (PIP). Here we further studied the folding pathway of HPI in vitro. While the oxidized refolding process of HPI was quenched, four obvious intermediates (namely P1, P2, P3, and P4, respectively) with three disulfide bridges were isolated and characterized. Contrary to the folding pathway of PIP, no intermediates with one- or two-disulfide bonds could be captured under different refolding conditions. CD analysis showed that P1, P2, and P3 retained partially structural conformations, whereas P4 contained little secondary structure. Based on the time-dependent distribution, disulfide pair analysis, and disulfide-reshuffling process of the intermediates, we have proposed that the folding pathway of HPI is significantly different from that of PIP. These differences reveal that the C-peptide not only facilitates the folding of HPI but also governs its kinetic folding pathway of HPI. Detailed analysis of the molecular folding process reveals that there are some similar folding mechanisms between PIP and HPI. These similarities imply that the initiation site for the folding of PIP/HPI may reside in the central alpha-helix of the B-chain. The formation of disulfide A20-B19 may guide the transfer of the folding information from the B-chain template to the unstructured A-chain. Furthermore, the implications of this in vitro refolding study on the in vivo folding process of HPI have been discussed.  相似文献   

2.
Chang J  Bulychev A  Li L 《FEBS letters》2000,487(2):298-300
A predominant conformational isomer of non-native alpha-lactalbumin (alpha-LA) has been purified by thermal denaturation of the native alpha-LA using the technique of disulfide scrambling. This unique isomer retains a substantial content of alpha-helical structure. It is stabilized by two native disulfide bonds within the alpha-helical domain and two scrambled non-native disulfide bonds at the beta-sheet domain. This denatured isomer of alpha-LA exhibits structural characteristics that are consistent with the well-documented molten globule state. The ability to prepare a stabilized and structurally defined molten globule provides a useful model for studying the folding and unfolding pathways of proteins.  相似文献   

3.
Lin CH  Li L  Lyu PC  Chang JY 《The protein journal》2004,23(8):553-566
Plant non-specific lipid transfer proteins (ns-LTPs) comprise two families, LTP1s and LTP2s, all structurally stabilized by four native disulfide bonds. Solution and crystal structures of both LTP1s and LTP2s from various plants have been determined. Despite the similarities of their biological function and backbone folds, the biophysical properties of LTP1s and LTP2s differ significantly. In this report, the mechanisms of unfolding and refolding of rice LTP1 and LTP2 have been investigated using the technique of disulfide bonds scrambling. LTP1 is shown to unfold and refold via predominant species of partially structured intermediates. Four isomers of partly unfolded and extensively unfolded LTP1 were identified, isolated and their disulfide structures were determined. By contrast, unfolding and refolding of LTP2 adopt a (close to) two-state mechanism, and undergo a reversible conversion between the native and a single extensively unfolded isomer without accumulation of any significant intermediate.  相似文献   

4.
Amphioxus insulin-like peptide (AILP) belongs to the insulin superfamily and is proposed as the common ancestor of insulin and insulin-like growth factor 1. Herein, the studies on oxidative refolding and reductive unfolding of AILP are reported. During the refolding process, four major intermediates, P1, P2, P3, and P4, were captured, which were almost identical to those intermediates, U1, U2, U3, and U4, captured during the AILP unfolding process. P4 (U4) has the native disulfide A20-B19; P1 (U1), P2 (U2), and P3 (U3) have two disulfide bonds, which include A20-B19. Based on the analysis of the time course distribution and properties of the intermediates, we proposed that fully reduced AILP refolded through 1SS, 2SS, and 3SS intermediate stages to the native form; native AILP unfolded through 2SS and 1SS intermediate stages to the full reduced form. A schematic flow chart of major oxidative refolding and reductive unfolding pathways of AILP was proposed. Implication for the folding behavior of insulin family proteins was discussed. There may be seen three common folding features in the insulin superfamily: 1) A20-B19 disulfide is most important and formed during the initial stage of folding process; 2) the second disulfide is nonspecifically formed, which then rearranged to native disulfide; 3) in vitro refolding and unfolding pathways may share some common folding intermediates but flow in opposite directions. Furthermore, although swap AILP is a thermodynamically stable final product, a refolding study of swap AILP demonstrated that it is also a productive intermediate of native AILP during refolding.  相似文献   

5.
We use the procedure established for 'disulfide stability analysis in redox system' to investigate the unfolding process of porcine insulin precursor (PIP). Six major unfolding intermediates have been captured, in which four contain two disulfides, two contain one disulfide. Based on the characterization and analysis of the intermediates an unfolding pathway has been proposed, by which the native PIP unfolded through in turn 2SS and 1SS intermediates into fully reduced form. Besides, the comparison of the intermediates captured in PIP unfolding process with those intermediates captured in its refolding process revealed that some intermediates captured during both unfolding/refolding processes of PIP have identical disulfide pairing pattern, from which we suggest that the unfolding/refolding processes of PIP share some common intermediates but flow in the opposite direction.  相似文献   

6.
Chen Y  You Y  Jin R  Guo ZY  Feng YM 《Biochemistry》2004,43(28):9225-9233
Although insulin and insulin-like growth factor-1 (IGF-1) belong to one family, insulin folds into one thermodynamically stable structure, while IGF-1-folds into two thermodynamically stable structures (native and swap forms). We have demonstrated previously that the bifurcating folding behavior of IGF-1 is mainly controlled by its B-domain. To further elucidate which parts of the sequences determine their different folding behavior, by exchanging the N-terminal sequences of mini-IGF-1 and recombinant porcine insulin precursor (PIP), we prepared four peptide models: [1-9]PIP, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1 by means of protein engineering, and their disulfide rearrangement, V8 digestion, circular dichroic spectra, disulfide stability, and in vitro refolding were investigated. Among them only [1-9]PIP, like mini-IGF-1/IGF-1, was expressed in yeast as two isomers: isomer 1 (corresponding to swap IGF-1) and isomer 2 (corresponding to native IGF-1), which are supported by the experimental results of disulfide rearrangements, peptide mapping of V8 endoprotenase digests, circular dichroic analysis, in vitro refolding, and disulfide stability analysis. The other peptide models, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1, fold into one stable structure as PIP does, which indicates that sequence 1-4 of mini-IGF-1 is important for the folding behavior of mini-IGF-1/IGF-1 but not sufficient to lead to a bifurcating folding. The results demonstrated that the folding information, by which mini-IGF-1/IGF-1-folds into two thermodynamically structures, is encoded/written in its sequence 1-9, while sequences 1-10 of B chain in insulin/PIP play an important role in the guide of its unique disulfide pairing during the folding process.  相似文献   

7.
Insulin is a double-chain (designated A and B chain respectively) protein hormone containing three disulfides, while insulin is synthesized in vivo as a single-chain precursor and folded well before being released from B-cells. Although the structure and function of insulin have been well characterized, the progress in oxidative folding pathway studies of insulin has been very slow, mainly due to the difficulties brought about by its disulfide-linked double-chain structure. To overcome these difficulties, we recently studied the in vitro oxidative folding process of two single-chain insulins: porcine insulin precursor (PIP) and human proinsulin (HPI). Based on the analysis of the intermediates captured during folding process, the folding pathways have been proposed for PIP and HPI separately. Similarities between the two folding pathways disclose some common principles that govern the insulin folding process. The following unfolding studies of PIP and HPI further indicate that C-peptide might also function during the folding of proinsulin. Here, we gave a brief review on in vitro folding/unfolding process of insulin and single-chain insulin. The implication of these studies on protein folding has also been discussed.  相似文献   

8.
Qiao ZS  Guo ZY  Feng YM 《Biochemistry》2001,40(9):2662-2668
Although the structure of insulin has been well studied, the formation pathway of the three disulfide bridges during the refolding of insulin precursor is ambiguous. Here, we reported the in vitro disulfide-forming pathway of a recombinant porcine insulin precursor (PIP). In redox buffer containing L-arginine, the yield of native PIP from fully reduced/denatured PIP can reach 85%. The refolding process was quenched at different time points, and three distinct intermediates, including one with one disulfide linkage and two with two disulfide bridges, have been captured and characterized. An intra-A disulfide bridge was found in the former but not in the latter. The two intermediates with two disulfide bridges contain the common A20-B19 disulfide linkage and another inter-AB one. Based on the time-dependent formation and distribution of disulfide pairs in the trapped intermediates, two different forming pathways of disulfide bonds in the refolding process of PIP in vitro have been proposed. The first one involves the rapid formation of the intra-A disulfide bond, followed by the slower formation of one of the inter-AB disulfide bonds and then the pairing of the remaining cysteines to complete the refolding of PIP. The second pathway begins first with the formation of the A20-B19 disulfide bridge, followed immediately by another inter-AB one, possibly nonnative. The nonnative two-disulfide intermediates may then slowly rearrange between CysA6, CysA7, CysA11, and CysB7, until the native disulfide bond A6-A11 or A7-B7 is formed to complete the refolding of PIP. The proposed refolding behavior of PIP is compared with that of IGF-I and discussed.  相似文献   

9.
10.
T Kiefhaber  R Quaas  U Hahn  F X Schmid 《Biochemistry》1990,29(12):3053-3061
It is our aim to elucidate molecular aspects of the mechanism of protein folding. We use ribonuclease T1 as a model protein, because it is a small single-domain protein with a well-defined secondary and tertiary structure, which is stable in the presence and absence of disulfide bonds. Also, an efficient mutagenesis system is available to produce protein molecules with defined sequence variations. Here we present a preliminary characterization of the folding kinetics of ribonuclease T1. Its unfolding and refolding reactions are reversible, which is shown by the quantitative recovery of the catalytic activity after an unfolding/refolding cycle. Refolding is a complex process, where native protein is formed on three distinguishable pathways. There are 3.5% fast-folding molecules, which refold within the millisecond time range, and 96.5% slow-folding species, which regain the native state in the time range of minutes to hours. These slow-folding molecules give rise to two major, parallel refolding reactions. The mixture of fast- and slow-folding molecules is produced slowly after unfolding by chain equilibration reactions that show properties of proline isomerization. We conclude that part of the kinetic complexity of RNase T1 folding can be explained on the basis of the proline model for protein folding. This is supported by the finding that the slow refolding reactions of this protein are accelerated in the presence of the enzyme prolyl isomerase. However, several properties of ribonuclease T1 refolding, such as the dependence of the relative amplitudes on the probes, used to follow folding, are not readily explained by a simple proline model.  相似文献   

11.
Salamanca S  Chang JY 《Biochemistry》2005,44(2):744-750
Alpha-lactalbumin (alphaLA)-IIIA is a major kinetic intermediate present along the pathways of reductive unfolding and oxidative folding of bovine alpha-lactalbumin (alphaLA). It is a three-disulfide variant of native alphaLA lacking Cys(6)-Cys(120) at the alpha-helical domain. Stability and the unfolding/refolding mechanism of carboxymethylated alphaLA-IIIA have been investigated previously by stop-flow circular dichroism (CD) and fluorescence spectroscopy. A stable intermediate compatible with molten globule was shown to exist along the pathways of unfolding-refolding of alphaLA-IIIA [Ikeguchi et al. (1992) Biochemistry 31, 16695-12700; Horng et al. (2003) Proteins 52, 193-202]. We investigate here the unfolding-refolding pathways and conformational stability of alphaLA-IIIA using the method of disulfide scrambling with the following specific aims: (a) to isolate and characterize the observed stable molten globule, (b) to analyze the heterogeneity of folding-unfolding intermediates, (c) to elucidate the disulfide structure of extensively unfolded isomer of alphaLA-IIIA, and (d) to clarify the relative conformational stability between alphaLA-IIIA and alphaLA. Two scrambled isomers, designated as X-alphaLA-IIIA-c and X-alphaLA-IIIA-a (X stands for scrambled), were isolated under mild and strong denaturing conditions. Their disulfide structures, CD spectra, and manners of refolding to form the native alphaLA-IIIA were analyzed in this report. The results are consistent with the notion that X-alphaLA-IIIA-c and X-alphaLA-IIIA-a represent a partially unfolded and an extensively unfolded isomers of native alphaLA-IIIA, respectively. The unfolding-refolding pathways of alphaLA-IIIA are elaborated and compared with that of intact alphaLA. These results display new insight into one of the most extensively studied molecules in the field of protein folding and unfolding.  相似文献   

12.
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl]1/2 at 3.4-5 M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1 mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys36-Cys49 and two disulfide bonds formed by two pair of consecutive cysteines, Cys22-Cys23 and Cys56-Cys57, a unique disulfide structure of polypeptide that has not been documented previously.  相似文献   

13.
Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds. When the disulfide bonds are intact, the chemical unfolding of HcpB at pH 5 is cooperative and can be described by a two-state reaction. Thermal unfolding is reversible between pH 2 and 5 and irreversible at higher pH 5. Differential scanning calorimetry shows noncooperative structural changes preceding the main thermal unfolding transition. Unfolding of the oxidized protein is not an all-or-none two-state process, and the disulfide bonds prevent complete unfolding of the polypeptide chain. The reduced protein is significantly less stable and does not unfold in a cooperative way. During oxidative refolding of the fully reduced protein, all the possible disulfide intermediates with a correct disulfide bond are formed. Formation of "wrong" (non-native) disulfide bonds could not be demonstrated, indicating that the reduced protein already has some partial repeating structure. There is a major folding intermediate with disulfides in the second, third, and fourth repeat and reduced cysteines in the first repeat. Disulfide formation in the first repeat limits the overall rate of oxidative refolding and contributes about half of the thermodynamic stability to native HcpB, estimated as 27 kJ mol(-1) at 25 degrees C and pH 7. The high contribution to stability of the first repeat may be explained by the repeat acting as a cap to protect the hydrophobic interior of the molecule.  相似文献   

14.
T Kiefhaber  R Quaas  U Hahn  F X Schmid 《Biochemistry》1990,29(12):3061-3070
The slow refolding of ribonuclease T1 was investigated by different probes. Structural intermediates with secondary structure are formed early during refolding, as indicated by the rapid regain of a native-like circular dichroism spectrum in the amide region. This extensive structure formation is much faster than the slow steps of refolding, which are limited in rate by the reisomerization of incorrect proline isomers. The transient folding intermediates were also detected by unfolding assays, which make use of the reduced stability of folding intermediates relative to that of the native protein. The results of this and the preceding paper [Kiefhaber et al. (1990) Biochemistry (preceding paper in this issue)] were used to propose kinetic models for the unfolding and refolding of ribonuclease T1. The unfolding mechanism is based on the assumption that, after the structural unfolding step, the slow isomerizations of two X-Pro peptide bonds occur independently of each other in the denatured protein. At equilibrium a small amount of fast-folding species coexists with three slow-folding species: two with one incorrect proline isomer each and another, dominant species with both these prolines in the incorrect isomeric state. In the mechanism for refolding we assume that all slow-folding molecules can rapidly regain most of the secondary and part of the tertiary structure early in folding. Reisomerizations of incorrect proline peptide bonds constitute the slow, rate-limiting steps of refolding. A peculiar feature of the kinetic model for refolding is that the major unfolded species with two incorrect proline isomers can enter two alternative folding pathways, depending on which of the two reisomerizes first. The relative rates of reisomerization of the respective proline peptide bonds at the stage of the rapidly formed intermediate determine the choice of pathway. It is changed in the presence of prolyl isomerase, because this enzyme catalyzes these two isomerizations with different efficiency and consequently leads to a shift from the very slow to the intermediate refolding pathway.  相似文献   

15.
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (Le-Nguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.  相似文献   

16.
Huang QL  Zhao J  Tang YH  Shao SQ  Xu GJ  Feng YM 《Biochemistry》2007,46(1):218-224
Although insulin and insulin-like growth factor-1 (IGF-1) belong to the insulin superfamily and share highly homologous sequences, similar tertiary structure, and a common ancestor molecule, amphioxus insulin-like peptide, they have different folding behaviors: IGF-1 folds into two thermodynamically stable tertiary structures (native and swap forms), while insulin folds into one unique stable structure. To further understand which part of the sequence determines their different folding behavior, based on previous reports from the laboratory, two peptide models, [B9A][1-4]porcine insulin precursor (PIP) and [B10E][1-4]PIP, were constructed. The plasmids encoding the peptides were transformed into yeast cells for expression of the peptides; the results showed that the former peptide was expressed as single component, while the latter was expressed as a mixture of two components (isomer 1 and isomer 2). The expression results together with studies of circular dichoism, disulfide rearrangement, and refolding lead us to deduce that isomer 1 corresponds to the swap form and the isomer 2 corresponds to the native form. We further demonstrate that the sequence 1-4 plus B9 of IGF-1 B-domain can make PIP fold into two structures, while sequence 1-5 of insulin B-chain can make IGF-1 fold into one unique structure. In other words, it is the IGF-1 B-domain sequence that 1-4 allows IGF-1 folding into two thermodynamically stable tertiary structures; this sequence plus its residue B9E can change PIP folding behavior from folding into one unique structure to two thermodynamically stable structures, like that of IGF-1.  相似文献   

17.
18.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

19.
A peptide model of insulin folding intermediate with one disulfide   总被引:4,自引:0,他引:4       下载免费PDF全文
Insulin folds into a unique three-dimensional structure stabilized by three disulfide bonds. Our previous work suggested that during in vitro refolding of a recombinant single-chain insulin (PIP) there exists a critical folding intermediate containing the single disulfide A20-B19. However, the intermediate cannot be trapped during refolding because once this disulfide is formed, the remaining folding process is very quick. To circumvent this difficulty, a model peptide ([A20-B19]PIP) containing the single disulfide A20-B19 was prepared by protein engineering. The model peptide can be secreted from transformed yeast cells, but its secretion yield decreases 2-3 magnitudes compared with that of the wild-type PIP. The physicochemical property analysis suggested that the model peptide adopts a partially folded conformation. In vitro, the fully reduced model peptide can quickly and efficiently form the disulfide A20-B19, which suggested that formation of the disulfide A20-B19 is kinetically preferred. In redox buffer, the model peptide is reduced gradually as the reduction potential is increased, while the disulfides of the wild-type PIP are reduced in a cooperative manner. By analysis of the model peptide, it is possible to deduce the properties of the critical folding intermediate with the single disulfide A20-B19.  相似文献   

20.
The single-chain insulin (PIP) can spontaneously fold into native structure through preferred kinetic intermediates. During refolding, pairing of the first disulfide A20-B19 is highly specific, whereas pairing of the second disulfide is likely random because two two-disulfide intermediates have been trapped. To get more details of pairing property of the second disulfide, four model peptides of possible folding intermediates with two disulfides were prepared by protein engineering, and their properties were analyzed. The four model peptides were named [A20-B19, A7-B7]PIP, [A20-B19, A6-B7]PIP, [A20-B19, A6-A11]PIP, and [A20-B19, A7-A11]PIP according to their remaining disulfides. The four model peptides all adopt partially folded structure with moderate conformational differences. In redox buffer, the disulfides of the model peptides are more easily reduced than those of the wild-type PIP. During in vitro refolding, the reduced model peptides share similar relative folding rates but different folding yields: The refolding efficiency of the reduced [A20-B19, A7-A11]PIP is about threefold lower than that of the other three peptides. The present results indicate that the folding intermediates corresponding to the present model peptides all adopt partially folded conformation, and can be formed during PIP refolding, but the chance of forming the intermediate with disulfide [A20-B19, A7-A11] is much lower than that of forming the other three intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号