首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of enzymes on porous inorganic materials is very important for biocatalysis and biotransformation. In this paper, nanoporous gold (NPG) was used as a support for lignin peroxidase (LiP) immobilization. NPG with a pore size of 40–50 nm was prepared by dealloying Au/Ag alloy (50:50 wt%) for 17 h. By incubation with LiP aqueous solution, LiP was successfully immobilized on NPG. The optimal temperature of the immobilized LiP was ca. 40, 10 °C higher than that of free LiP. After 2 h incubation at 45 °C, 55% of the initial activity of the immobilized LiP was still retained while the free LiP was completely deactivated. In addition, a high and sustainable LiP activity was achieved via in situ release of H2O2 by a co-immobilized glucose oxidase. The present co-immobilization system was demonstrated to be very effective for LiP-mediated dye decolourization.  相似文献   

2.
The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), laccase, carboxymethylcellulase (CMCase), avicelase, xylanase and feruloyl esterase activities were screened and the content of lignin as well as hydroxycinnamic acids in fermented straw were determined. All fungi secreted feruloyl esterase while LiP was only detected in crude extracts from B. adusta. Since no significant differences (P > 0.05) were observed in remaining lignin content of fermented straw, LiP activity was not a limiting factor of enzymatic lignin removal process. The levels of esterified hydroxycinnamic acids degradation were considerably higher than previous reports with lignocellulosic biomass. The data show that P. rufa, may be considered for more specific studies as higher ferulic and p-coumaric acids degradation was observed for earlier incubation times.  相似文献   

3.
The aim of this study was to exploit the bacterial biofilms to remove dyes from industrial effluents. Biofilms of strains AK1, AK2, VKY1 and a consortium on sheep bone chips were examined in batch, repeated batch and continuous packed bed bioreactor. Biofilms are more efficient for decolourization of Amaranth dye at three different dye concentrations (200, 400, and 600 mg l−1). 100% decolourization of Amaranth dye was observed even at higher concentrations (400 and 600 mg l−1) by all the tested biofilms in 24 h than that of corresponding free cells. The biofilms were superior over those of free cells and could be reused for more than 18 repeated cycles. In a packed bed bioreactor, biofilms could be operated with much higher dilution rates and at lower hydraulic retention time. Further, the decolourization of dye was confirmed by UV–visible spectrophotometer, TLC and HPLC analysis of Amaranth dye degradation products from packed bed bioreactor effluent.  相似文献   

4.
The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.  相似文献   

5.

Background

Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology.

Results

A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592?±?6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30?kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants K m and V max were 70 and 56???M and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects.

Conclusions

The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications.  相似文献   

6.
Summary The extracellular ligninolytic enzymes of white-rot fungi are thought to catalyse the initial steps during the degradation of highly complex compounds like lignin or polycyclic aromatic hydrocarbons. We studied the ability of Pleurotus florida isolated from the foothills of the Western Ghats, India to decolourize the three dyestuffs, Reactive Green, Yellow and Blue, which are widely used in the textile industry around Coimbatore, Tamil Nadu, India. The crude culture filtrate of Pleurotus florida when incubated with different concentrations of dye decolourized it efficiently on the third day. The highest colour removal was found in the case of Reactive Blue. However, when Agaricus bisporus extract was supplemented with Pleurotus florida filtrate, the efficiency increased. The dye decolourization was advanced to the second day and the efficiency of dye decolourization of Reactive Yellow was 89% followed by Reactive Green, which was 45% when a dye concentration of 0.5% was used. Pleurotus florida filtrate alone and in combination with Agaricus bisporus extract reduced the aromatic compounds in textile and paper industry effluents on the first day with >90% efficiency.  相似文献   

7.
In this paper, the in vivo decolourization of the polymeric dye Poly R‐478 by semi‐solid‐state cultures of Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) was investigated, employing corncob as a support. In order to stimulate the ligninolytic system of the fungus, the cultures were supplemented with veratryl alcohol (2 mM) or manganese (IV) oxide (1 g/l). Maximum manganese‐dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of around 2,000 U/l and 400 U/l were attained by the former, whereas the activities reached by the latter were of about 1,500 U/l and 200 U/l, respectively. Furthermore, laccase activity (around 150 U/l) was only detected in manganese (IV) oxide supplemented cultures. The polymeric dye Poly R‐478 (0.02 w/v) was added to three‐day‐old cultures. A percentage of biological decolourization of about 85% was achieved using cultures supplemented with veratryl alcohol, whereas MnO2 cultures showed a rather lower percentage of around 58% after nine days of dye incubation. Moreover, a correlation between MnP activity and Poly R‐478 decolourization could be observed, indicating that this enzyme is mainly responsible for dye degradation. In the present work, the in vivo decolourizing capability of the ligninolytic complex secreted by P. chrysosporium was investigated under the above‐mentioned cultivation conditions, employing a model compound, such as the polymeric dye Poly R‐478.  相似文献   

8.
Summary Lignin (LiP) and manganese peroxidase (MnP) excretion by Phanerochaete chrysosporium INA-12 was significantly increased in response to fungal extract supplementation. LiP and MnP production was increased 1.7- and 1.8-fold, respectively, with fungal extracts from agitated pellet cultures of strain INA-12, namely fungal extracts P6 and P4. In cultures supplemented with a fungal extract harvested from static cultures of strain INA-12 (fungal extract S4), LiP and MnP production was increased 1.8- and 1.6-fold, respectively. Succinate dehydrogenase activity, a mitochondrial marker, was significantly enhanced (2.7-fold) in cultures with the addition of fungal extracts. Correspondence to: M. Asther  相似文献   

9.
Ligninolytic enzyme production by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor precultivated with different insoluble lignocellulosic materials (grape seeds, barley bran and wood shavings) was investigated. Cultures of Phanerochaete chrysosporium precultivated with grape seeds and barley bran showed maximum lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) activities (1000 and 1232 U/l, respectively). Trametes versicolor precultivated with the same lignocellulosic residues showed the maximum laccase activity (around 250 U/l). For both fungi, the ligninolytic activities were about two-fold higher than those attained in the control cultures. In vitro decolorization of the polymeric dye Poly R-478 by the extracellular liquid obtained in the above-mentioned cultures was monitored in order to determine the respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading capability of LiP when P. chrysosporium was precultivated with barley bran gave a percentage of Poly R-478 decolorization of about 80% in 100 s, whereas control cultures showed a lower percentage, around 20%, after 2 min of the decolorization reaction.  相似文献   

10.
The aim of this work was to investigate the poorly understood effects of co-culturing of two white rot fungi on the production of lignin-degrading enzyme activities. Four species, Ceriporiopsis subvermispora, Physisporinus rivulosus, Phanerochaete chrysosporium and Pleurotus ostreatus were cultured in pairs to study the degradation of aspen wood and the production of lignin-degrading enzymes. Potential of co-culturing for biopulping was evaluated. Chemical analysis of decayed aspen wood blocks showed that co-culturing of C. subvermispora with P. ostreatus could significantly stimulate wood decay, when compared to monocultures. Based on the fungi tested here, however, this effect is species-specific. Other combinations of fungi were slightly stimulating or not stimulatory. The pattern of lignin degradation was altered towards the acid insoluble part of lignin especially in co-cultures where P. ostreatus was included as a partner. The use of agar plates containing the polymeric dye Poly R-478 showed elevated dye decolourization at the confrontation zone between mycelia. Laccase was significantly stimulated only in the co-culture of P. ostreatus with C. subvermispora. Manganese peroxidase activity was stimulated in co-cultures of P. ostreatus with C. subvermispora or with P. rivulosus. Immunoblotting indicated changes in lignin-degrading enzymes and/or their isoform composition in response to co-culturing. This is the first report on the effects of co-culturing of potential biopulping fungi on wood degradation, and gives basic knowledge on fungal interactions during wood decay that can be utilized in practical applications.  相似文献   

11.
One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3–5); inoculum size(1–5 mL) and fermentation time (3–15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.  相似文献   

12.
A partially purified enzymic extract from Phaeodactylum tricornutum was immobilized on silica gel and the specific activity of chlorophyllase in its free and immobilized states were compared in a ternary micellar system. The storage stability of the free and immobilized chlorophyllase extracts, maintained at temperatures ranging from 4 to 35°C for a period of 0–20 h, was temperature-dependent. The results also showed that the specific activity of the free and immobilized chlorophyllase extracts was highest at 30°C for long-term incubation, using chlorophyll and pheophytin as substrates and that a three-fold increase in the specific activity of the immobilized chlorophyllase was observed in comparison to that obtained with the free counterpart. The findings indicated that when free and immobilized chlorophyllase extracts were recovered and reused with both substrates, the immobilized chlorophyllase extract could be recycled for longer periods of time, while the free enzyme extract showed no activity after the first cycle.  相似文献   

13.
Marine-derived fungi are a potential for the search of new compounds with relevant features. Among these, the ligninolytic enzymes have potential applications in a large number of fields, including the environmental and industrial sectors. This is the work aimed to evaluate the enzymatic activities of three marine-derived fungi (Aspergillus sclerotiorum CBMAI 849, Cladosporium cladosporioides CBMAI 857 and Mucor racemosus CBMAI 847) under different carbon sources and salinity conditions by using statistical experimental design. MnP, LiP and laccase were detected when these fungi were cultured in malt extract, however when grown on basal medium containing glucose and wheat bran LiP was not detected and yet an increase in MnP and laccase was observed. Statistical analysis through surface responses was performed and results showed high values of MnP and laccase activities under 12.5% and 23% (w/v) salinity, highlighting the potential use of these fungi for industrial applications and in bioremediation of contaminated sites having high salt concentrations. The highest values for LiP (75376.34 UI L−1), MnP (4484.30 IU L−1) and laccase (898.15 UI L−1) were obtained with the fungus M. racemosus CBMAI 847 and it is the first report concerning ligninolytic enzymes production by a zygomycete from this genus.  相似文献   

14.
Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen (HN; 24 mM N) shaken cultures were much greater than those seen in low-nitrogen (2.4 mM N), malt extract, or wood-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar (100-mesh-size ground wood) as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HN cultures showed two laccase activity bands (Mr of 40,000 and 66,000), whereas isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, 4.8, and 5.1. Low levels of MnP activity (~100 U/liter) were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.  相似文献   

15.
A white rot fungus Thelephora sp. was used for decolourization of azo dyes such as orange G (50 microM), congo red (50 microM), and amido black 10B (25 microM). Decolourization using the fungus was 33.3%, 97.1% and 98.8% for orange G, congo red and amido black 10B, respectively. An enzymatic dye decolourization study showed that a maximum of 19% orange G was removed by laccase at 15 U/ml whereas lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) at the same concentration decolourized 13.5% and 10.8%, orange G, respectively. A maximum decolourization of 12.0% and 15.0% for congo red and amido black 10B, respectively, was recorded by laccase. A dye industry effluent was treated by the fungus in batch and continuous modes. A maximum decolourization of 61% was achieved on the third day in the batch mode and a maximum decolourization of 50% was obtained by the seventh day in the continuous mode. These results suggest that the batch mode of treatment using Thelephora sp. may be more effective than the continuous mode for colour removal from dye industry effluents.  相似文献   

16.
Microcosm assays with dye-amended culture media under a shot-feeding strategy allowed us to obtain 100 yeast isolates from the wastewater outfall channel of a dyeing textile factory in Tucumán (Argentina). Meanwhile, 63 yeast isolates were obtained from Phoebe porphyria (Laurel del monte) samples collected from Las Yungas rainforest (Tucumán), via a classical isolation scheme. Isolated yeasts, both from dye-polluted and virgin environments, were compared for their textile dye decolourization ability when cultured on solid and liquid media. Nine isolates from wastewater and 17 from Las Yungas showed the highest decolourization potential on agar plates containing six different reactive dyes, either alone or as a mixture. Five yeasts from each environment were further selected on the basis of their high dye removal rate in Vilmafix® Red 7B-HE- or Vilmafix® Blue RR-BB-amended liquid cultures. Yeasts from wastewater showed slightly higher decolourization percentages after 36 h of culture than yeasts from Las Yungas (98?C100% vs. 91?C95%, respectively). However, isolates from Las Yungas exhibited higher specific decolourization rates than isolates from effluents (1.8?C3.0 vs. 0.9?C1.3 mg g?1h?1, respectively). All selected isolates were first grouped according to microsatellite-PCR analysis and representative isolates from each group were subsequently identified based on the 26S rRNA gene sequence analysis. Yeasts from wastewater were identified as the ascomycetous Pichia kudriavzevii (100%) and closely related to Candida sorbophila (99.8%), whilst yeasts from Las Yungas were identified as the basidiomycetous Trichosporon akiyoshidainum and Trichosporon multisporum. It is suggested that findings concerning yeast selection during screening programs for dye-decolourizing yeasts may be explained in the light of the copiotroph-oligotroph microorganisms rationale.  相似文献   

17.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

18.
A laboratory-scale rotating biological contactor (RBC) reactor with immobilized fungal biomass of Phanerochaete chrysosporium was investigated for its performance in decolourizing synthetic wastewater containing single or mixture of azo dyes, Direct Red-80 (DR-80) and Mordant Blue-9 (MB-9). Decolourization efficiency in the continuously operated bioreactor was studied by varying dye inlet concentration and disc rotation speed at two different wastewater hydraulic retention times (HRTs), i.e. 24and 48 h. Results from the single dye-containing experiments showed that the system could completely decolourize the wastewater for a maximum inlet dye concentration within the range 25–200 mg L−1 and 48 h HRT in the reactor; for an inlet dye concentration above 200 mg L−1, the decolourization efficiency slightly reduced up to 85% for the same HRT. However, wastewater containing DR-80 was found to be decolourized more efficiently compared to that containing MB-9. Further, the effect of increase in the disc rotation speed from 2 to 6 rpm in the study revealed no large differences in the decolourization efficiencies of the wastewaters. Similar results were obtained with wastewater containing the dyes together at various concentration combinations as per the two-level factorial design of experiments. Enzyme activities of lignin peroxidase and manganese peroxidase by the fungus were also analysed in the study, and the results indicated that while DR-80 showed a large negative effect on both the enzymes, MB-9 affected mainly the MnP activity by the fungus.  相似文献   

19.
The decolourization of a mixture of 200 mg L−1 each of Reactive Black 5 and Reactive Red 2 dye was studied in batch experiments using microorganisms growing on forest residue wood chips in combination with or without added white-rot fungus, Bjerkandera sp. BOL 13. The study was performed as a first stage in the development of a relatively simple treatment process for textile wastewater, designed to work in developing countries. Forest residue wood chips contain a mixture of fungi and bacteria which is an advantage when complex molecules should be degraded. The wood chips furthermore provide the microorganisms with carbon source which make the addition of e.g. glucose unnecessary. The results showed that the microorganisms growing on the forest residue wood chips decolourized the mixture of the two dyes; adding extra nutrients approximately doubled the decolourization rate. The time needed for decolourization was approximately 18 days when nutrients were added. Lignocellulosic material is complex and so were the analysis, microorganisms were therefore transferred to ordinary soft wood chips from forest residue wood chips. Decolourization was measured with spectrophotometer and in order to determine intermediates HPLC was used.  相似文献   

20.
甘草根茎乙醇提取物抗菌活性研究   总被引:5,自引:0,他引:5  
本实验采用琼脂扩散法和微量肉汤稀释法,研究了甘草根茎乙醇提取物对5种细菌(表皮葡萄球菌、金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和绿脓杆菌)和2种真菌(白色念珠菌和黑曲霉)的抗菌活性。结果表明,甘草根茎乙醇提取物对革兰氏阳性菌非常敏感,而对革兰氏阴性菌和真菌不敏感,80%乙醇提取物对革兰氏阳性菌的MIC范围为0.156~0.312 mg·mL-1,而10%乙醇提取物对革兰氏阳性菌的MIC范围为0.625~1.250 mg·mL-1,表明甘草根茎抗菌活性成分在高浓度乙醇中溶解度较大,为临床上应用甘草根茎醇提物作为抗菌制剂提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号