首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade, substantial evidence established that long noncoding RNAs are serious about mediating the evolution of malignancies. In previous studies, LINC00365, which has not been reported in colorectal cancer (CRC), was selected using the bioinformatics analysis in GSE109454 and GSE41655 data sets. However, the function and mechanism of LINC00365 are still obscure. In our study, LINC00365 was found upregulated in CRC specimens and intimately connected with the prognosis of patients with CRC. In addition, LINC00365 overexpression enhances the cell abilities of proliferation, migration, and invasion in vitro. Meanwhile, mechanistic studies showed that LINC00365 might involve in CRC cell progression by mediating the Wnt/β-catenin pathway. Furthermore, LINC00365 upregulation increased CDK1 protein expression. In conclusion, this study suggests that LINC00365 acts as a vital part in facilitating CRC progression and might play as a therapeutic target for patients with CRC.  相似文献   

2.
TRIM29 plays an important role in many neoplasms.In this study,we aimed to elucidate its role in hepatocellular carcinoma (HCC) and explore the corresponding potential mechanism.The expression level of TRIM29 in HCC samples and hepatoma cell lines was detected.We found that TRIM29 was down-regulated in clinical HCC samples and cultured hepatoma cell lines by western blot analysis and quantitative polymerase chain reaction.In addition,we demonstrated that higher TRIM29 expression was associated with higher differentiation grade of HCC.To explore the effect of TRIM29 on hepatoma cells and its possible mechanisms,TRIM29-knockdown and overexpression cell models were constructed.The results showed that the depletion of TRIM29 promoted liver cancer cell proliferation,clone formation,migration and invasion in vitro probably through the Wnt/β-catenin signaling pathway.This study revealed the inhibitory roles of TRIM29 in HCC and the possible mechanisms.  相似文献   

3.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In this study, we found that nuclear accumulation of β-catenin was higher in cisplatin-resistant Huh7 cells than in Huh7 cells, indicating that Wnt signaling was activated in cisplatin-resistant cells. Wnt signaling inhibition increased cisplatin-induced growth inhibition in hepatoma cell. We further demonstrated that sorafenib could inhibit Wnt signaling in Huh7 cells and cisplatin-resistant Huh7 cells. Co-treatment with cisplatin and sorafenib was more effective in inhibiting cancer cell proliferation than cisplatin alone in vitro and in vivo, whereas Wnt3a (Wnt activator) treatment abrogated sorafenib-induced growth inhibition. These data demonstrated that sorafenib sensitizes human HCC cell to cisplatin via suppression of Wnt/β-catenin signaling, thus offering a new target for chemotherapy of HCC.  相似文献   

4.
Clevers H  Nusse R 《Cell》2012,149(6):1192-1205
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.  相似文献   

5.
Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/β-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.  相似文献   

6.
Consumption of dietary ellagitannins (ETs) has been proven to benefit multiple chronic health disorders including cancers and cardiovascular diseases. Urolithins, gut microbiota metabolites derived from ETs, are considered as the molecules responsible for these health effects. Previous studies have demonstrated that urolithins exhibit antiproliferative effects on prostate, breast, and colon cancers. However, as for hepatocellular carcinoma (HCC), it remains elusive. Herein, we aim to investigate the function of urolithin B (UB), a member of urolithins family, in HCC. The effects of UB on cell viability, cell cycle and apoptosis were evaluated in HCC cells, and we found UB could inhibit the proliferation of HCC cells, which resulted from cell cycle arrest and apoptosis. Furthermore, UB could increase phosphorylated β-catenin expression and block its translocation from nuclear to cytoplasm, thus inducing the inactivation of Wnt/β-catenin signaling. Using a xenograft mice model, UB was found to suppress tumor growth in vivo. In conclusion, our data demonstrated that UB could inhibit the proliferation of HCC cells in vitro and in vivo via inactivating Wnt/β-catenin signaling, suggesting UB could be a promising candidate in the development of anticancer drugs targeting HCC.  相似文献   

7.
Long noncoding RNA small nucleolar RNA host gene 1 (lnc-SNHG1) was reported to play an oncogenic role in the progression of cancers. However, the roles of SNHG1 and its molecular mechanism in osteosarcoma (OS) cells are largely unknown. In present study, we found that the expression of SNHG1 was up-regulated in OS tissues and cell lines. OS patients with the high SNHG1 expression were positively correlated with tumor size, TNM stage and lymph node metastasis. In addition, SNHG1 overexpression promoted cell proliferation, cell migration and EMT process in U2OS and MG63 cells and tumor growth in vivo. Furthermore, we also found that miR-577 could act as a ceRNAof SNHG1 in OS cells and the promotion of OS progression induced by lnc-SNHG1 overexpression required the inactivity of miR-577. Besides, we identified that WNT2B acted as a target of miR-577, and WNT2B played the oncogenic role in OS cells by activating Wnt/β-catenin pathway. In short, our study suggested that lnc-SNHG1 could promote OS progression via miR-577 and WNT2B. The lnc-SNHG1/miR-577/WNT2B/Wnt/β-catenin axis regulatory network might provide a potential new therapeutic strategy for OS treatment.  相似文献   

8.
This study aimed to investigate the functional roles of kinesin family member 18B (KIF18B) in hepatocellular carcinoma (HCC) development, as well as the related molecular mechanisms. Tissue specimens were collected from 105 patients with HCC, and the messenger RNA (mRNA) and protein levels of KIF18B were detected using quantitative real-time polymerase chain reaction and immunohistochemistry assays, respectively. The χ2 test was performed to estimate the association of KIF18B with clinical characteristics of patients with HCC. Effects of KIF18B expression on biological behaviors of HCC cells were detected by clone formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and transwell assays. The expression patterns of proteins were investigated using Western blot analysis. HCC tissues and cell lines showed significant upregulation of KIF18B at both mRNA and protein levels (p > .05, for all). Furthermore, the elevated KIF18B expression was positively correlated with the tumor-node-metastasis stage (p = .015) and lymph node metastasis (p = .007). Knockdown of KIF18B might suppress HCC cell clone formation, proliferation, migration, and invasion in vitro. Besides, the activity of Wnt/β-catenin pathway was also significantly inhibited after the KIF18B knockdown. However, the antitumor actions caused by KIF18B knockdown might be reversed by lithium chloride treatment, which was the inducer of Wnt/β-catenin-signaling pathway. KIF18B may serve as an oncogene in HCC through enhancing the activity of Wnt/β-catenin pathway.  相似文献   

9.
《Organogenesis》2013,9(2):92-99
Wnt/β-catenin signaling has come to the forefront of liver biology in recent years. This pathway regulates key pathophysiological events inherent to the liver including development, regeneration, and cancer, by dictating several biological processes such as proliferation, apoptosis, differentiation, adhesion, zonation and metabolism in various cells of the liver. This review will examine the studies that have uncovered the relevant roles of Wnt/β-catenin signaling during the process of liver development. We will discuss the potential roles of Wnt/β-catenin signaling during the phases of development, including competence, hepatic induction, expansion, and morphogenesis. In addition, we will discuss the role of negative and positive regulation of this pathway and how the temporal expression of Wnt/β-catenin can direct key processes during hepatic development. We will also identify some of the major deficits in the current understanding of the role of Wnt/β-catenin signaling in liver development in order to provide a perspective for future studies. Thus, this review will provide a contextual overview of the role of Wnt/β-catenin signaling during hepatic organogenesis.  相似文献   

10.
Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.  相似文献   

11.
12.
13.
LGR5, a seven-transmembrane domain receptor of the rhodopsin family, is a Wnt target gene and a bona fide marker of adult stem cells in the gastrointestinal tract and hair follicle bulge. Recently, we and others demonstrated that LGR5 and its homologues function as receptors of the R-spondin family of stem cell factors to potentiate Wnt/β-catenin signaling. However, the mechanism of how LGR5 enhances the signaling output remains unclear. Here we report that following costimulation with the ligands R-spondin1 and Wnt3a, LGR5 interacts and forms a supercomplex with the Wnt coreceptors LRP6 and Fzd5 which is rapidly internalized and then degraded. Internalization of LGR5 is mediated through a dynamin- and clathrin-dependent pathway. Inhibition of this endocytic process has no effect on LGR5 signaling. Deletion of the C-terminal tail of LGR5 maintains its ability to interact with LRP6, yet this LGR5 mutant exhibits increased signaling activity and a decreased rate of endocytosis in response to R-spondin1 compared to the wild-type receptor. This study provides direct evidence that LGR5 becomes part of the Wnt signaling complex at the membrane level to enhance Wnt/β-catenin signaling. However, internalization of LGR5 does not appear to be essential for potentiating the canonical Wnt signaling pathway.  相似文献   

14.
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.  相似文献   

15.
16.
Previous research showed that microRNA-612 (miR-612) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of hepatocellular carcinoma (HCC). AKT2 was confirmed to be a direct target of miR-612, through which the epithelial–mesenchymal transition (EMT) and metastasis of HCC were inhibited. Our present findings reveal that miR-612 is able to suppress the stemness of HCC by reducing the number and size of tumorspheres as well as clone formation in soft agar, and to relieve drug resistance to cisplatin and 5-fluorouracil. In addition, miR-612 hampered the capacity of tumorigenesis in NOD/SCID mice and redistributed the tumor invasive frontier of miR-612-modulating cells. Finally, our findings suggest that Wnt/β-catenin signaling is required in the regulation of EMT-associated stem cell-like traits by miR-612.  相似文献   

17.
Abnormal activation the WNT/β-catenin signaling pathway has been associated with ovarian carcinomas, but a specific WNT ligand and pertinent downstream mechanisms are not fully understood. In this study, we found abundant WNT7A in the epithelium of serous ovarian carcinomas, but not detected in borderline and benign tumors, normal ovary, or endometrioid carcinomas. To characterize the role of WNT7A in ovarian tumor growth and progression, nude mice were injected either intraperitoneally or subcutaneously with WNT7A knocked down SKOV3.ip1 and overexpressed SKOV3 cells. In the intraperitoneal group, mice receiving SKOV3.ip1 cells with reduced WNT7A expression developed significantly fewer tumor lesions. Gross and histologic examination revealed greatly reduced invasion of WNT7A knockdown cells into intestinal mesentery and serosa compared with the control cells. Tumor growth was regulated by loss or overexpression of WNT7A in mice receiving subcutaneous injection as well. In vitro analysis of cell function revealed that cell proliferation, adhesion, and invasion were regulated by WNT7A. The activity of the T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter was stimulated by overexpression of WNT7A in ovarian cancer cells. Cotransfection with WNT7A and FZD5 receptor further increased activity, and this effect was inhibited by cotransfection with SFRP2 or dominant negative TCF4. Overexpression of WNT7A stimulated matrix metalloproteinase 7 (MMP7) promoter, and mutation of TCF-binding sites in MMP7 promoter confirmed that activation of MMP7 promoter by WNT7A was mediated by β-catenin/TCF signaling. Collectively, these results suggest that reexpression of WNT7A during malignant transformation of ovarian epithelial cells plays a critical role in ovarian cancer progression mediated by WNT/β-catenin signaling pathway.  相似文献   

18.
The Wnt/β-catenin signaling pathbway controls many important biological processes. R-Spondin (RSPO) proteins are a family of secreted molecules that strongly potentiate Wnt/β-catenin signaling, however, the molecular mechanism of RSPO action is not yet fully understood. We performed an unbiased siRNA screen to identify molecules specifically required for RSPO, but not Wnt, induced β-catenin signaling. From this screen, we identified LGR4, then an orphan G protein-coupled receptor (GPCR), as the cognate receptor of RSPO. Depletion of LGR4 completely abolished RSPO-induced β-catenin signaling. The loss of LGR4 could be compensated by overexpression of LGR5, suggesting that LGR4 and LGR5 are functional homologs. We further demonstrated that RSPO binds to the extracellular domain of LGR4 and LGR5, and that overexpression of LGR4 strongly sensitizes cells to RSPO-activated β-catenin signaling. Supporting the physiological significance of RSPO-LGR4 interaction, Lgr4-/- crypt cultures failed to grow in RSPO-containing intestinal crypt culture medium. No coupling between LGR4 and heterotrimeric G proteins could be detected in RSPO-treated cells, suggesting that LGR4 mediates RSPO signaling through a novel mechanism. Identification of LGR4 and its relative LGR5, an adult stem cell marker, as the receptors of RSPO will facilitate the further characterization of these receptor/ligand pairs in regenerative medicine applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号