首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bamboo macromolecules were pretreated with bamboo vinegar, which has an antibacterial property, and processed into antibacterial bioboard (ABB) by hot pressing. The ABB was then analyzed by conducting Fourier-transform infrared spectroscopy, thermogravimetric analysis and differential thermal analysis. Results showed that ABB samples had average density of 1.0 g/cm3, which is appropriate for application. The physical and mechanical properties were best for the ABB sample pretreated with bamboo vinegar and hot pressed at 165 °C for 10 min. Fourier-transform infrared spectroscopy revealed that the optimum conditions for hot pressing were a temperature of 165 °C, duration of 10 min, and the addition of bamboo vinegar. Thermogravimetric analysis/differential thermal analysis curves indicated that the thermal degradation of the ABB was less than that of bamboo, revealing that hot pressing increased the thermal stability of ABB samples. Analysis revealed that pretreatment with bamboo vinegar improved the antibacterial property of the ABB.  相似文献   

2.

Background

Titania dioxide (TiO2) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved.

Methodology/Principal Findings

Using thermal reduction method, here we synthesized silver-nanostructures coated TiO2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO2, carbon-doped TiO2 [TiO2 (C)] and nitrogen-doped TiO2 [TiO2 (N)], TiO2 (N) showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO2 (N) substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials.

Conclusion/Significance

Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.  相似文献   

3.
In this study, we are successfully fabricated on a hydrogel consisting of TiO2 nanoparticles loaded onto a gelatin/chitosan matrix to control the acceleration of bone fracture healing and improved the nursing care applications. Each specimen (chitosan, gelatin and titanium dioxide) were characterized and confirmed by using different techniques, Fourier transforms infrared spectroscopy, X-ray diffraction analysis, Scanning Electron Microscopy with Elemental dispersive X-ray analysis, Thermo-gravimetric and Differential thermal analysis. In addition, the cell cytotoxicity results verified that the TiO2/gelatin-chitosan hydrogel are nontoxic to osteoblasts. And cell fixation outcome after 5 days of incubation condition revels that the enhanced in vitro cell survival and cell spreading on the prepared TiO2 incorporated hydrogel with respect to gelatin/chitosan hydrogel. Furthermore, TiO2/gelatin-chitosan hydrogel nanostructures can modulate the bone fracture healing, indicating a potential application on nursing care.  相似文献   

4.

Background

Traditional antibacterial photocatalysts are primarily induced by ultraviolet light to elicit antibacterial reactive oxygen species. New generation visible-light responsive photocatalysts were discovered, offering greater opportunity to use photocatalysts as disinfectants in our living environment. Recently, we found that visible-light responsive platinum-containing titania (TiO2–Pt) exerted high performance antibacterial property against soil-borne pathogens even in soil highly contaminated water. However, its physical and photocatalytic properties, and the application in vivo have not been well-characterized.

Methods

Transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet–visible absorption spectrum and the removal rate of nitrogen oxides were therefore analyzed. The antibacterial performance under in vitro and in vivo conditions was evaluated.

Results

The apparent quantum efficiency for visible light illuminated TiO2–Pt is relatively higher than several other titania photocatalysts. The killing effect achieved approximately 2 log reductions of pathogenic bacteria in vitro. Illumination of injected TiO2–Pt successfully ameliorated the subcutaneous infection in mice.

Conclusions

This is the first demonstration of in vivo antibacterial use of TiO2–Pt nanoparticles. When compared to nanoparticles of some other visible-light responsive photocatalysts, TiO2–Pt nanoparticles induced less adverse effects such as exacerbated platelet clearance and hepatic cytotoxicity in vivo.

General significance

These findings suggest that the TiO2–Pt may have potential application on the development of an antibacterial material in both in vitro and in vivo settings.  相似文献   

5.
Zirconium sulfophenyl phosphonate (ZrSP), Zr(O3P-C6H4SO3H)2, was synthesized and characterized to prepare nanocomposites based on chitosan (CS). The effects of ZrSP on the structure, morphology, and thermal properties, as well as the mechanical properties of the films were investigated by Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile tests. FTIR spectroscopy revealed that electrostatic interactions had been formed in the nanocomposites, which improved the compatibility between CS and ZrSP. XRD and SEM results indicated the ZrSP nanoparticles were uniformly distributed in the chitosan matrix at low loading, and obvious aggregations existed at high loading. In addition, compared with neat CS, the values of tensile strength (σb), elongation at break (εb), and water resistance of CS/ZrSP-3 containing 0.6 wt % ZrSP had been improved by 60.0%, 69.7%, and 41.8%, respectively.  相似文献   

6.
This study is focused on the fabrication and characterization of titanium oxide (TiO2) NPs. Afterwards; the interaction of TiO2 NPs with human hemoglobin (Hb) was investigated by FTIR spectroscopy, fluorescence spectroscopy, and molecular docking studies. Also, the cytotoxic effect of fabricated TiO2 NPs against human white blood cells (WBCs) was considered by MTT assay. The antibacterial effect of synthesized NPs was examined on Pseudomonas aeruginosa (ATCC 27853); Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923). TEM and DLS investigations showed that the synthesized TiO2 NPs have a narrow nano-sized distribution. XRD pattern of the fabricated NPs exhibited that the TiO2 NPs contain anatase phase. Similarity in amide I and II signal intensities showed that secondary structure of the adsorbed Hb is preserved. The intrinsic fluorescence study revealed that the fluorescence quenching of Hb was done by complex formation between Hb and TiO2 NPs trough the hydrogen bond and van der Waals interactions. Synchronous fluorescence spectroscopy determined that interaction of TiO2 NPs with Hb did not unfold the Hb structure in the vicinity of the Tyr and Trp residues. Molecular docking study depicted that Glu-95, Thr-134 and Tyr-140 are involved in the formation of hydrophilic bonds. MTT data and antibacterial assays indicated that TiO2 NPs endow distinguished antibacterial activities against Gram-negative and Gram positive strains at safe concentrations. This study may reveal that fabricated TiO2 NP can be used as a safe and potent antibacterial agent.

Communicated by Ramaswamy H. Sarma  相似文献   


7.
Flax fiber is an important textile material with excellent antibacterial activity and moisture wicking. Degumming of flax roving is essential in determining flax-fiber quality. Traditional degumming requires a large amount of chemicals to process flax roving. This study aimed to reduce the chemical usage and achieve cleaner production during this process by applying microbial treatment to degum flax roving. Microbial degumming instead of acid pickling and NaClO2-bleaching steps can no longer use H2SO4 and NaClO2, and the amount of alkali can be reduced by 50%. By analyzing the compositional changes of the main steps in traditional degumming processes and microbial-treatment sample, the application of Bacillus subtilis HR5 can achieve a good degumming effect. Results of environmental scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffractometry analyses showed that the gum was remarkably reduced, which can be confirmed by the gum components. Overall, the breaking tenacity and antibacterial activity of fibers degummed by microbial treatment were better than those treated by traditional degumming. These findings demonstrated the feasibility of microbial treatment as a solution for flax roving degumming.  相似文献   

8.
A semiconductor nano-material was prepared, and its degradation efficiency of zearalenone (ZEN) was studied. The photocatalytic material graphitic carbon nitride (g-C3N4) was synthesized by the traditional method of hot cracking. Its structure was characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation experiment showed that under the irradiation of ultraviolet (UV) lamp (254 nm, including 185 nm), g-C3N4 could induce photocatalytic effect, which provided a new method for the degradation of ZEN in real powder samples. The experimental conditions of photocatalytic degradation of the primary reference material of ZEN and ZEN in real powder samples were explored. And the degradation products of ZEN were analyzed after high-performance liquid chromatography–mass spectrometry (HPLC–MS). Under each optimal experimental conditions, the degradation rate on primary reference material of ZEN and ZEN in real powder samples was 96.0% and 50.0%, respectively. The results in this work provide a theoretical reference and practical basis for the photocatalytic degradation of mycotoxin in real powder samples by g-C3N4.  相似文献   

9.
Fourier-transform infrared (FTIR) spectroscopy was carried out on single colonies of Pediastrum duplex present in air-dried preparations of mixed phytoplankton samples isolated from a eutrophic freshwater lake. FTIR absorption spectra had 12 distinct bands over the wavenumber range 3300–900?cm?1 which were tentatively assigned to a range of chemical groups, including –OH (residual water, wavenumber 3299?cm?1), –CH2 (lipid, 2924), –C=O (cellulose, 1739), amide (protein, 1650 and 1542), >P=O (nucleic acid, 1077) and –C–O (starch, 1151 and 1077). Measurement of band areas identified residual water, protein and starch as the major detectable constituents. Areas of single bands and combined bands of –CH2, –C–O and >P=O species normalized to protein (to correct for differences in specimen hydration and thickness) showed wide variation between colonies, indicating environmental heterogeneity. Correlation analysis demonstrated close statistical associations between different molecular species. Particularly high levels of correlation between bands 3/4 (CH2), 6/7 (amide) and 8/9 (–CH3) was consistent with their joint origin from the same molecular species. The isolation of bands 11 and 12 in the correlation pattern was confirmed by factor analysis, suggesting that variation in the level of starch is statistically unrelated to other macromolecules being monitored. The use of FTIR spectroscopy to characterize an algal micro-population within mixed phytoplankton has potential for future studies on biodiversity and environmental interactions at the species level.  相似文献   

10.
We studied antibacterial and photocatalytic activity of anatase TiO2 and ZnO in phosphate buffer and saline solution. We found that the different anions in the suspension medium (chloride and phosphate) significantly affected the following suspension properties: the stability of nanoparticle suspension, the release of metal ions from the nanoparticles, and the production of the reactive oxygen species by the nanoparticles. As a result, antibacterial activity and photocatalytic dye degradation were also affected. However, the effect of the suspension medium was different for ZnO and TiO2. Obtained results are discussed.  相似文献   

11.
This work focuses on the photocatalytic performances and antibacterial activity of nitrogen doped TiO2 nanosystems with three and five layers obtained by a sol-gel route, followed by thermal treatment in oxygen or ammonia atmosphere at temperatures between 400 and 1000°C. Subsequently, the antibacterial activity of the obtained nanosystems on the Escherichia coli cells are determined and discussed. The obtained results show a significant dependence of the functional performances on the system’s composition. In particular, the antimicrobial activity of nitrogen-doped TiO2 films is correlated with the temperature of thermal treatment and illumination time with visible artificial light.  相似文献   

12.
The luminescent properties and energy transfer (ET) mechanism in the Ln3+ pair of the RE3+ (RE = Eu3+, Ce3+, Dy3+ and Sm3+) doped K4Ca(PO4)2 phosphor were successfully investigated using a conventional high-temperature solid-state reaction. In the near infrared (NIR) range, Ce3+-doped K4Ca(PO4)2 phosphor exhibited a UV–Vis. emission band, whereas K4Ca(PO4)2:Dy3+ exhibited characteristic emission bands centred at 481 and 576 nm in the near-ultraviolet excitation range. The possibility of ET from Ce3+ to Dy3+ in K4Ca(PO4)2 phosphor was confirmed by a significant increase in the photoluminescence intensity of the Dy3+ ion based on the spectral overlap of acceptor and donor ions. X-ray diffraction, Fourier-transform infrared and thermogravimetric analysis/differential thermal analysis TGA/DTA were carried out to study phase purity, presence of functional groups and amount of weight loss under different temperature regimes. Therefore, the RE3+-doped K4Ca(PO4)2 phosphor may be a stable phosphor host for light-emitting diode applications.  相似文献   

13.
Cymbopogon citratus-mediated pure aluminium oxide (Al2O3) and europium (Eu)-doped Al2O3 with different amounts of metal ion were prepared using a green synthesis method. Synthesised nanoparticles were characterised by ultraviolet (UV)-visible spectroscopy, photoluminescence (PL), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Synthesis of nanoparticles is confirmed by using UV-visible spectroscopy showing maximum absorption at 411 and 345 nm for Al2O3 and Eu-doped Al2O3, respectively. The antibacterial activity of prepared nanoparticles was evaluated against Pseudomonas aeruginosa, Streptococcus aureus, Escherichia coli and Klebsiella pneumoniae using a well-diffusion technique. The effect of pure Al2O3 and Eu-doped nanoparticles shows excellent results against P. aeruginosa, S. aureus, E. coli and K. pneumoniae.  相似文献   

14.
Calcium fructoborate samples of composition Ca(C6H10O6BO)2·3.5H2O were characterized by chemical analysis, infrared and Raman spectroscopy, and thermoanalytical (thermogravimetric and differential thermal analysis) data. Theoretical studies, using density functional theory, were made for seven different structural models of the fructoborate moiety, and the most stable structure could be derived from these calculations. The results of the theoretical study also allow improving the assignment of the vibrational spectra of the compound.  相似文献   

15.
The thermal behaviour of bovine-brain myelin membrane has been studied by high-sensitivity differential scanning calorimetry, Fourier-transform infrared spectroscopy and thermal gel analysis. Spectroscopic results indicate that protein transitions take place between 60°C and 90°C, while thermal gel analysis has provided the thermal denaturation profiles of myelin proteolipid, DM-20 protein and the Wolfgram Fraction. An irreversible calorimetric transition centred at 80.3 ± 0.2°C with a specific enthalpy of 4.7 ± 0.6 J/g of total protein has been assigned to the thermal denaturation of myelin proteolipid and DM-20 protein. The effects of the myelin storage conditions, scan rate, ionic strength and pH on this calorimetric transition have also been investigated. The thermal transition of the proteolipid practically disappears after treatment of the myelin with different amounts of chloroform-methanol 2:1 (v/v), a treatment which is generally used in proteolipid purification. On the other hand, the addition of several detergents to myelin only causes minor modifications to this transition, which then occurs at about 70°C, with a specific enthalpy of between 2.5 and 3.6 J/g of total protein. These results appear to show that detergents preserve the native conformation of the proteolipid far more than do organic solvents. Hence the use of detergents would seem to be the appropriate method for proteolipid purification.Abbreviations DSC Differential scanning calorimetry - TGA Thermal gel analysis - FTIR Fourier-transform infrared spectroscopy - PLP Proteolipid protein - MBP Myelin basic protein - DM-20 Protein DM-20 - WF Wolfgram fraction - BSA Bovine serum albumine - SDS Sodium dodecyl sulfate - ANSA 4-amino-3-hydroxynaphthalene-1-sulphonic acid - OG -d-glucopyranoside - PAGE Polyacrylamide gel electrophoresis - Chaps 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate - CNS Central nervous system Correspondence to: P. L. Mateo  相似文献   

16.
Cu (II) and Ag(I) together with TiO2 powder were deposited on conducting support substrates to enhance the photocatalytic ability. The catalytic efficiency was tested by monitoring the photocatalytic degradation and detriment of methylene blue (MB) and bovine serum albumin (BSA). The conformational change of BSA induced by catalysts was also observed by circular dichroism spectroscopy.The antibacterial activities were studied by Escherichia coli. Both MB and BSA could be degraded more efficiently than pure TiO2. After treatment with catalyst, the morphology of cells became twisted and rougher. Regular wrinkles were damaged and groove-like rift appeared on the surface. The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Changes of the spectral profile of E. coli were observed, which suggested the damages of surface groups on the cell membrane.  相似文献   

17.
Colloidal silver has been known to have unique antimicrobial activity that may be useful in the construction of antibacterial materials (self-cleaning materials) to aid in the fight against bacteria-related infections. In this study, silver-coated TiO2 (Ag/TiO2) particles prepared through the photo-reduction of Ag+ were investigated as an antibacterial agent against Escherichia coli and Staphylococcus aureus. The deposition of Ag onto the surface was confirmed with SEM and EDS analysis of the post-reaction particles. It was also determined that the initial concentration of Ag+ in solution played a significant role in the effective size of the post-irradiation particles. The antibacterial effectiveness of the Ag/TiO2 was evaluated through the determination of the minimum inhibitory concentration (MIC) of AgTiO2 for each species of bacteria. The MIC values for the Ag/TiO2, on both E. coli and S. aureus, were much lower than the MIC values for Ag metal, and quite comparable to the MIC values for AgNO3. A disc diffusion/antibiotic sensitivity test was also performed using the Ag/TiO2 particles and the results compared with the results obtained for Ag metal, AgNO3 and common antibacterial agents; tetracycline, chloramphenicol, erythromycin, and neomycin. The zone of inhibition diameters for the Ag/TiO2 particles were found to be comparable with those of the other antimicrobial agents.  相似文献   

18.
Understanding the degradation mechanisms of photoelectrodes and improving their stability are essential for fully realizing solar‐to‐hydrogen conversion via photo‐electrochemical (PEC) devices. Although amorphous TiO2 layers have been widely employed as a protective layer on top of p‐type semiconductors to implement durable photocathodes, gradual photocurrent degradation is still unavoidable. This study elucidates the photocurrent degradation mechanisms of TiO2‐protected Sb2Se3 photocathodes and proposes a novel interface‐modification methodology in which fullerene (C60) is introduced as a photoelectron transfer promoter for significantly enhancing long‐term stability. It is demonstrated that the accumulation of photogenerated electrons at the surface of the TiO2 layer induces the reductive dissolution of TiO2, accompanied by photocurrent degradation. In addition, the insertion of the C60 photoelectron transfer promoter at the Pt/TiO2 interface facilitates the rapid transfer of photogenerated electrons out of the TiO2 layer, thereby yielding enhanced stability. The Pt/C60/TiO2/Sb2Se3 device exhibits a high photocurrent density of 17 mA cm?2 and outstanding stability over 10 h of operation, representing the best PEC performance and long‐term stability compared with previously reported Sb2Se3‐based photocathodes. This research not only provides in‐depth understanding of the degradation mechanisms of TiO2‐protected photocathodes, but also suggests a new direction to achieve durable photocathodes for photo‐electrochemical water splitting.  相似文献   

19.
Charge‐carriers photoexcited above a semiconductor's bandgap rapidly thermalize to the band‐edge. The cooling of these difficult to collect “hot” carriers caps the available photon energy that solar cells–including efficient perovskite solar cells–may utilize. Here, the dynamics and efficiency of hot carrier extraction from MAPbI3 (MA = methylammonium) perovskite by spiro‐OMeTAD (a hole‐transporting layer) and TiO2 (an electron‐transporting layer) are investigated and explained using both ultrafast electronic spectroscopy and theoretical modeling. Time‐resolved spectroscopy reveals a quasi‐equilibrium distribution of hot carriers forming upon excess‐energy excitation of the perovskite–a distribution largely unaffected by the presence of TiO2. In contrast, the quasi‐equilibrium distribution of hot carriers is virtually nonexistent when spiro‐OMeTAD is present, which is indicative of efficient hot hole extraction at the interface of MAPbI3. Density functional theory calculations predict that deep energy‐levels of MAPbI3 exhibit electronically delocalized character, with significant overlap with the localized valence band charge of the spiro‐OMeTAD molecules lying on the surface of MAPbI3. Consequently, hot holes are easily extracted from the deep energy‐levels of MAPbI3 by spiro‐OMeTAD. These findings uncover the origins of efficient hot hole extraction in perovskites and offer a practical blueprint for optimizing solar cell interlayers to enable hot carrier utilization.  相似文献   

20.
This review summarizes the recent developments of thin film polymer coated photocatalysis with TiO2 mediating the discoloration/degradation of the azo-dye Orange II under light irradiation. The stable anchoring of TiO2 on non-heat resistant but chemically inert flexible polymer films is described. The nature of the polymer films used, the pretreatment of the film for the TiO2 loading and the testing of the photocatalytic activity are addressed for different inert polymer films not having the conventional functional surface groups to bind TiO2. The discoloration of Orange II in the presence of LDPE/TiO2 is completed in about 10 h. This is a significantly longer times than the one observed for the same process when Tedlar/TiO2 and Parylene/TiO2 were used in the dye discoloration process. This points out to specific effects particular to each the polymer support used to graft the photoactive TiO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号