首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(3):222-228
BACKGROUND: Lower blood DNA methylation has been associated with atherosclerosis and high cardiovascular risk. Mechanisms linking DNA hypomethylation to increased cardiovascular risk are still largely unknown. In a population of community-dwelling elderly individuals, we evaluated whether DNA methylation in LINE-1 repetitive element, heavily methylated sequences dispersed throughout the human genome, was associated with circulating Vascular Cell Adhesion Molecule-1 (VCAM-1), Inter- Cellular Adhesion Molecule-1 (ICAM-1), and C-reactive protein (CRP). METHODS AND RESULTS: We measured LINE-1 methylation by bisulfite PCR-Pyrosequencing on 742 blood DNA samples from male participants in the Boston area Normative Aging Study (mean age=74.8 years). Mean serum VCAM-1 increased progressively in association with LINE-1 hypomethylation (from 975.2 to 1063.4 ng/ml in the highest vs. lowest methylation quintiles; ptrend= 0.004). The association between VCAM-1 and LINE-1 hypomethylation was significant in individuals without ischemic heart disease or stroke (n=480; p=0.001), but not in those with prevalent disease (n=262; p=0.57). Serum ICAM-1 and CRP were not associated with LINE-1 methylation (p-trend=>0.25). All results were confirmed by multivariable analyses adjusting for age, BMI, smoking, pack-years, and ischemic heart disease/stroke. CONCLUSIONS: LINE-1 element hypomethylation is associated with higher serum VCAM-1. Our data provide new insights into epigenetic events that may accompany the development of cardiovascular disease.  相似文献   

2.
Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1) associate with bladder cancer (BCa) development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS) and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of treatment.  相似文献   

3.
Lower levels of LINE-1 methylation in peripheral blood have been previously associated with risk of developing non-communicable conditions, the most well-explored of these being cancer, although recent research has begun to link altered LINE-1 methylation and cardiovascular disease. We examined the relationship between LINE-1 methylation and factors associated with metabolic and cardiovascular diseases through quantitative bisulfite pyrosequencing in DNA from peripheral blood samples from participants of the Samoan Family Study of Overweight and Diabetes (2002–03). The sample included 355 adult Samoans (88 men and 267 women) from both American Samoa and Samoa. In a model including all sample participants, men had significantly higher LINE-1 methylation levels than women (p = 0.04) and lower levels of LINE-1 methylation were associated with higher levels of fasting LDL (p = 0.02) and lower levels of fasting HDL (p = 0.009). The findings from this study confirm that DNA “global” hypomethylation (as measured by methylation at LINE-1 repeats) observed previously in cardiovascular disease is associated with altered levels of LDL and HDL in peripheral blood. Additionally, these findings strongly argue the need for further research, particularly including prospective studies, in order to understand the relationship between LINE-1 DNA methylation measured in blood and risk factors for cardiovascular disease.Key words: cardiovascular disease, HDL, LDL, LINE-1, DNA methylation, Samoa  相似文献   

4.
5.
Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13148-011-0032-8) contains supplementary material, which is available to authorized users.  相似文献   

6.
《Epigenetics》2013,8(10):1257-1264
Lower levels of LINE-1 methylation in peripheral blood have been previously associated with risk of developing non-communicable conditions, the most well-explored of these being cancer, although recent research has begun to link altered LINE-1 methylation and cardiovascular disease. We examined the relationship between LINE-1 methylation and factors associated with metabolic and cardiovascular diseases through quantitative bisulfite pyrosequencing in DNA from peripheral blood samples from participants of the Samoan Family Study of Overweight and Diabetes (2002-03). The sample included 355 adult Samoans (88 men and 267 women) from both American Samoa and Samoa. In a model including all sample participants, men had significantly higher LINE-1 methylation levels than women (p=0.04), and lower levels of LINE-1 methylation were associated with higher levels of fasting LDL (p=0.02) and lower levels of fasting HDL (p=0.009). The findings from this study confirm that DNA "global" hypomethylation, (as measured by methylation at LINE-1 repeats) observed previously in cardiovascular disease is associated with altered levels of LDL and HDL in peripheral blood. Additionally, these findings strongly argue the need for further research, particularly including prospective studies, in order to understand the relationship between LINE-1 DNA methylation measured in blood and risk factors for cardiovascular disease.  相似文献   

7.
Down syndrome (DS, also known as trisomy 21) most often results from chromosomal nondisjunction during oogenesis. Numerous studies sustain a causal link between global DNA hypomethylation and genetic instability. It has been suggested that DNA hypomethylation might affect the structure and dynamics of chromatin regions that are critical for chromosome stability and segregation, thus favouring chromosomal nondisjunction during meiosis. Maternal global DNA hypomethylation has not yet been analyzed as a potential risk factor for chromosome 21 nondisjunction. This study aimed to asses the risk for DS in association with maternal global DNA methylation and the impact of endogenous and exogenous factors that reportedly influence DNA methylation status. Global DNA methylation was analyzed in peripheral blood lymphocytes by quantifying LINE-1 methylation using the MethyLight method. Levels of global DNA methylation were significantly lower among mothers of children with maternally derived trisomy 21 than among control mothers (P = 0.000). The combination of MTHFR C677T genotype and diet significantly influenced global DNA methylation (R2 = 4.5%, P = 0.046). The lowest values of global DNA methylation were observed in mothers with MTHFR 677 CT+TT genotype and low dietary folate. Although our findings revealed an association between maternal global DNA hypomethylation and trisomy 21 of maternal origin, further progress and final conclusions regarding the role of global DNA methylation and the occurrence of trisomy 21 are facing major challenges.  相似文献   

8.
Woo HD  Kim J 《PloS one》2012,7(4):e34615

Background

Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk.

Methods

We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model.

Results

The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I2: 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I2: 0%) and LINE-1 used same target sequence (p = 0.097, I2: 49%), whereas considerable variance remained in LINE-1 (p<0.001, I2: 80%) and bladder cancer studies (p = 0.016, I2: 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28–1.70)].

Conclusions

Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.  相似文献   

9.
《Epigenetics》2013,8(11):1532-1539
DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75th and 25th of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects’ high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted.  相似文献   

10.
DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75th and 25th of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects’ high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted.  相似文献   

11.
There are at least two findings that show DNA hypomethylation plays a key role in carcinogenesis. The first major evidence is that DNA hypomethylation induces target chromosomal and genomic instability with cancer manifestations. The second reason that cancer progression is associated with deepening DNA hypomethylation. Nevertheless, the evolution of this crucial epigenomic alteration in the somatic cellular malignant transformation remains unclear.From some of the experimental data to be present, a key role of DNA hypomethylation in early development of epigenetic somatic cancer biology is proposed. We have observed the significant increasing of genome ploidy at the level of peripheral blood lymphocytes taken from the patients with different solid carcinomas. Similarly, 5-azacytidine demethylating DNA treatment of cultured healthy lymphocytes induces increased nuclear DNA content. We argue that somatic lymphocyte ploidy induced by genomic DNA hypomethylation during carcinogenesis is related to global demethylation and decondensation of mitotic constitutive pericentromeric heterochromatin. This results in disturbances of pericentromeric heterochromatin that are expressed in nuclear heterochromatinization on the basis of extrachromosomal chromomerization.On the basis of literature searches and experimental findings, it is proposed that DNA hypomethylation plays the role of an initiator in epigenetic somatic cancer biology.  相似文献   

12.
Dobigny G  Waters PD  Robinson TJ 《Genetica》2006,127(1-3):81-86
Genomic stress resulting from the interspecific hybridization of marsupials has been shown to lead to hypomethylation and transposable element over-amplification. Here we investigated both methylation status and transposable element (LINE-1) activity in an F1 hybrid between the black (Diceros bicornis) and white rhinoceros (Ceratotherium simum). Our data show that in this instance the hybrid genome was not characterised by gross hypomethylation and LINE-1 over-amplification thus extending previous investigations on eutherian mammals. These findings underscore observations that wide-scale genomic instability involving hypomethylation and mobile element release may be marsupial specific phenomena within Mammalia. Gauthier Dobigny, Paul D. Waters: These authors equally contributed to this work  相似文献   

13.
Concentrations of cell-free DNA (cfDNA) circulating in blood and its epigenetic variation, such as DNA methylation, may provide useful diagnostic or prognostic information. Long interspersed nuclear element-1 (LINE-1) constitutes approximately 20% of the human genome and its 5’UTR region is CpG rich. Due to its wide distribution, the methylation level of the 5’UTR of LINE-1 can serve as a surrogate marker of global genomic DNA methylation. The aim of the current study was to investigate whether the methylation status of LINE-1 elements in serum cell-free DNA differs between relapsing remitting multiple sclerosis (RRMS) patients and healthy control subjects (CTR). Serum DNA samples of 6 patients and 6 controls were subjected to bisulfite sequencing. The results showed that the methylation level varies among distinct CpG sites in the 5’UTR of LINE-1 repeats and revealed differences in the methylation state of specific sites in this element between patients and controls. The latter differences were largely due to CpG sites in the L1PA2 subfamily, which were more frequently methylated in the RRMS patients than in the CTR group, whereas such differences were not observed in the L1HS subfamily. These data were verified by quantitative PCR using material from 18 patients and 18 control subjects. The results confirmed that the methylation level of a subset of the CpG sites within the LINE-1 promoter is elevated in DNA from RRMS patients in comparison with CTR. The present data suggest that the methylation status of CpG sites of LINE repeats could be a basis for development of diagnostic or prognostic tests.  相似文献   

14.
Oxidative stress and DNA methylation are metabolically linked through the relationship between one-carbon metabolism and the transsulfuration pathway, but possible modulating effects of oxidative stress on DNA methylation have not been extensively studied in humans. Enzymes involved in DNA methylation, including DNA methyltransferases and histone deacetylases, may show altered activity under oxidized cellular conditions. Additionally, in vitro studies suggest that glutathione (GSH) depletion leads to global DNA hypomethylation, possibly through the depletion of S-adenosylmethionine (SAM). We tested the hypothesis that a more oxidized blood GSH redox status is associated with decreased global peripheral blood mononuclear cell (PBMC) DNA methylation in a sample of Bangladeshi adults. Global PBMC DNA methylation and whole blood GSH, glutathione disulfide (GSSG), and SAM concentrations were measured in 320 adults. DNA methylation was measured by using the [3H]-methyl incorporation assay; values are inversely related to global DNA methylation. Whole blood GSH redox status (Eh) was calculated using the Nernst equation. We found that a more oxidized blood GSH Eh was associated with decreased global DNA methylation (B ± SE, 271 ± 103, p = 0.009). Blood SAM and blood GSH were associated with global DNA methylation, but these relationships did not achieve statistical significance. Our findings support the hypothesis that a more oxidized blood GSH redox status is associated with decreased global methylation of PBMC DNA. Furthermore, blood SAM does not appear to mediate this association. Future research should explore mechanisms through which cellular redox might influence global DNA methylation.  相似文献   

15.
《Epigenetics》2013,8(6):606-614
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.  相似文献   

16.
Several dietary agents, such as micronutrient and non-nutrient components, the so-called bioactive food components, have been shown to display anticancer properties and influence genetic processes. The most common epigenetic change is DNA methylation. Hypomethylation of long interspersed elements (LINE-1) has been associated with an increased risk of several cancers, although conflicting findings have also been observed. The aim of the present study was to test the hypothesis that a low adherence to the Mediterranean diet (MD) and folate deficiency may cause LINE-1 hypomethylation in blood leukocytes of healthy women, and thus genomic instability. One hundred and seventy-seven non-pregnant women were enrolled. Mediterranean diet score (MDS) and folate intake were calculated using a food frequency questionnaire. LINE-1 methylation level was measured by pyrosequencing analysis in three CpG sites of LINE-1 promoter. According to MDS, only 9.6 % of subjects achieved a high adherence to MD. Taking into account the use of supplements, there was a high prevalence of folate deficiency (73.4 %). Women whose consumption of fruit was below the median value (i.e., <201 gr/day) were 3.7 times more likely to display LINE-1 hypomethylation than women whose consumption was above the median value (OR 3.7; 95 % CI 1.4–9.5). Similarly, women with folate deficiency were 3.6 times more likely to display LINE-1 hypomethylation than women with no folate deficiency (OR 3.6; 95 % CI 1.1–12.1). A dietary pattern characterized by low fruit consumption and folate deficiency is associated with LINE-1 hypomethylation and with cancer risk.  相似文献   

17.
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.  相似文献   

18.
《Epigenetics》2013,8(2):188-194
Global DNA hypomethylation affecting repeat sequences has been reported in different cancer types. Herein, we investigated the methylation levels of repetitive DNA elements in chronic lymphocytic leukemia (CLL), their correlation with the major cytogenetic and molecular features, and clinical relevance in predicting therapy-free survival (TFS). A quantitative bisulfite-PCR Pyrosequencing method was used to evaluate methylation of Alu, long interspersed nuclear elements-1 (LINE-1) and satellite-α (SAT-α) sequences in 77 untreated early-stage (Binet A) CLL patients. Peripheral B-cells from 7 healthy donors were used as controls. Methylation levels (median %5mC) were lower in B-CLLs compared with controls (21.4 vs. 25.9; 66.8 vs. 85.7; 84.0, vs. 88.2 for Alu, LINE-1 and SAT-α, respectively) (p < 0.001). Among CLL patients, a significant association was observed with 17p13.1 deletion (16.8 vs. 22.4; 51.2 vs. 68.5; 52.6 vs. 85.0, for Alu, LINE-1 and SAT-α) but not with other major genetic lesions, IgVH mutation status, CD38 or ZAP-70 expression. Follow-up analyses showed that lower SAT-α methylation levels appeared to be an independent prognostic marker significantly associated with shorter TFS. Our study extended previous limited evidences in methylation of repetitive sequences in CLL suggesting an important biological and clinical relevance in the disease.  相似文献   

19.
《Epigenetics》2013,8(11):1504-1510
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution.  相似文献   

20.
Malignant cell transformation is accompanied with abnormal DNA methylation, such as the hypermethylation of certain gene promoters and hypomethylation of retrotransposons. In particular, the hypomethylation of the human-specific family of LINE-1 retrotransposons was observed in lung cancer tissues. It is also known that the circulating DNA (cirDNA) of blood plasma and cell-surface-bound circulating DNA (csb-cirDNA) of cancer patients accumulate tumor-specific aberrantly methylated DNA fragments, which are currently considered to be valuable cancer markers. This work compares LINE-1 retrotransposon methylation patterns in cirDNA of 16 lung cancer patients before and after treatment. CirDNA was isolated from blood plasma, and csb-cirDNA fractions were obtained by successive elution with EDTA-containing phosphate buffered saline and trypsin. Concentrations of methylated LINE-1 region 1 copies (LINE-1-met) were assayed by real-time methylation-specific PCR. LINE-1 methylation levels were normalized to the concentration of LINE-1 region 2, which was independent of the methylation status (LINE-1-Ind). The concentrations of LINE-1-met and LINE-1-Ind in csb-cirDNA of lung cancer patients exhibited correlations before treatment (r = 0.54), after chemotherapy (r = 0.72), and after surgery (r = 0.83) (P < 0.05, Spearman rank test). In the total group of patients, the level of LINE-1 methylation (determined as the LINE-1-met/LINE-1-Ind ratio) was shown to increase significantly during the follow-up after chemotherapy (P < 0.05, paired t test) and after surgery compared to the level of methylation before treatment (P < 0.05, paired t test). The revealed association between the level of LINE-1 methylation and the effect of antitumor therapy was more pronounced in squamous cell lung cancer than in adenocarcinoma (P < 0.05 and P > 0.05, respectively). These results suggest a need for the further investigation of dynamic changes in levels of LINE-1 methylation depending on the antitumor therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号