共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic stress resulting from the interspecific hybridization of marsupials has been shown to lead to hypomethylation and transposable element over-amplification. Here we investigated both methylation status and transposable element (LINE-1) activity in an F1 hybrid between the black (Diceros bicornis) and white rhinoceros (Ceratotherium simum). Our data show that in this instance the hybrid genome was not characterised by gross hypomethylation and LINE-1 over-amplification thus extending previous investigations on eutherian mammals. These findings underscore observations that wide-scale genomic instability involving hypomethylation and mobile element release may be marsupial specific phenomena within Mammalia. Gauthier Dobigny, Paul D. Waters: These authors equally contributed to this work 相似文献
2.
Lissette Delgado-Cruzata Neomi Vin-Raviv Parisa Tehranifar Julie Flom Diane Reynolds Karina Gonzalez Regina M Santella Mary Beth Terry 《Epigenetics》2014,9(11):1504-1510
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution. 相似文献
3.
《Epigenetics》2013,8(11):1504-1510
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution. 相似文献
4.
5.
It has been noted for quite some time that DNA methylation levels decline with age. The significance of this change remained unknown until it became possible to measure methylation status of specific sites on the DNA. It was observed that while the methylation of some sites does indeed decrease with age, that of others increase or remain unchanged. The application of machine learning methods to these quantitative changes in multiple sites, allowed the generation of a highly accurate estimator of age, called the epigenetic clock. The application of this clock on large human epidemiological data sets revealed that discordance between the predicted (epigenetic age) and chronological age is associated with many age-related pathologies, particularly when the former is greater than the latter. The epigenetic clock clearly captures to some degree, biological features that accompany the ageing process. Despite the ever-increasing scope of pathologies that are found to be associated with accelerated epigenetic ageing, the basic principles that underlie the ticking of the clock remain elusive. Here, we describe the known molecular and cellular attributes of the clock and consider their properties, and proffer opinions as to how they may be connected and what might be the underlying mechanism. Emerging from these considerations is the inescapable view that epigenetic ageing begins from very early moments after the embryonic stem cell stage and continues un-interrupted through the entire life-course. This appears to be a consequence of processes that are necessary for the development of the organism from conception and to maintain it thereafter through homeostasis. Hence, while the speed of ageing can, and is affected by external factors, the essence of the ageing process itself is an integral part of, and the consequence of the development of life.Impact statementThe field of epigenetic ageing is relatively new, and the speed of its expansion presents a challenge in keeping abreast with new discoveries and their implications. Several reviews have already addressed the great number of pathologies, health conditions, life-style, and external stressors that are associated with changes to the rate of epigenetic ageing. While these associations highlight and affirm the ability of epigenetic clock to capture biologically meaningful changes associated with age, they do not inform us about the underlying mechanisms. In this very early period since the development of the clock, there have been rather limited experimental research that are aimed at uncovering the mechanism. Hence, the perspective that we proffer is derived from available but nevertheless limited lines of evidence that together provide a seemingly coherent narrative that can be tested. This, we believe would be helpful towards uncovering the workings of the epigenetic clock. 相似文献
6.
Witchaya Phetliap Laura S. Rozek Shoko Oshikawa Katherine Helmick Katie Rentschler 《人类与生态风险评估》2019,25(3):688-705
The effects of chronic arsenic exposure mode on DNA methylation and skin lesion type are unclear. These relationships were investigated in an arsenic-contaminated area of southern Thailand. Cases with arsenical skin lesions (n = 131) and lesion-free controls (n = 163) were selected from an arsenic-contaminated sub-district, as well as 105 controls from a non-contaminated area. Type and severity of skin lesions and salivary global DNA methylation (LINE-1) were determined. Arsenic exposure was characterized as occupational, domestic and current (toe-nail arsenic). Associations were explored using logistic regression. Cases and controls had lower LINE-1 methylation and higher toenail arsenic than external controls (74.65% and 74.61% vs 76.05%, p < 0.001 for each). Cases were more likely to have been exposed domestically (ORtotal 1.76, 95% ci 1.00, 3.11; and 2.22, 95% ci 1.22, 4.03; Ptrend = 0.005 for exposure <36 and ≥36 years). More severe spotty hyperpigmentation was related to higher LINE-1 methylation (Ptrend=0.006). LINE-1 methylation was positively associated with toenail arsenic only among non-symptomatic exposed subjects (OR 1.31, 95% ci 1.06, 1.64; p = 0.014). Exposure to an arsenic-contaminated environment results in global DNA hypomethylation. However, among symptomatic subjects, increased global DNA methylation was associated with increased severity of spotty hyperpigmentation. 相似文献
7.
Pingchuan Li Feray Demirci Gayathri Mahalingam Caghan Demirci Mayumi Nakano Blake C.Meyers 《遗传学报》2013,40(5):249-260
The analysis of cytosine methylation provides a new way to assess and describe epigenetic regulation at a whole-genome level in many eukaryotes. DNA methylation has a demonstrated role in the genome stability and protection, regulation of gene expression and many other aspects of genome function and maintenance. BS-seq is a relatively unbiased method for profiling the DNA methylation, with a resolution capable of measuring methylation at individual cytosines. Here we describe, as an example, a workflow to handle DNA methylation analysis, from BS-seq library preparation to the data visualization. We describe some applications for the analysis and interpretation of these data. Our laboratory provides public access to plant DNA methylation data via visualization tools available at our “Next-Gen Sequence” websites (http://mpss.udel.edu), along with small RNA, RNA-seq and other data types. 相似文献
8.
Gracia María Martín-Nú?ez Elehazara Rubio-Martín Rebeca Cabrera-Mulero Gemma Rojo-Martínez Gabriel Olveira Sergio Valdés Federico Soriguer Luis Casta?o Sonsoles Morcillo 《Epigenetics》2014,9(10):1322-1328
In the last years, epigenetic processes have emerged as a promising area of complex diseases research. DNA methylation measured in Long Interspersed Nucleotide Element 1 (LINE-1) sequences has been considered a surrogate marker for global genome methylation. New findings have suggested the potential involvement of epigenetic mechanisms in Type 2 diabetes (T2DM) as a crucial interface between the effects of genetic predisposition and environmental influences. Our study evaluated whether global DNA methylation predicted increased risk from T2DM or other carbohydrate metabolism disorders in a cohort study. We used a prospective cohort intervention study and a control group. We collected phenotypic, anthropometric, biochemical, and nutritional information from all subjects. Global LINE-1 DNA methylation was quantified by pyrosequencing technology. Subjects that did not improve their carbohydrate metabolism status showed lower levels of global LINE-1 DNA methylation (63.9 ± 1.7 vs. 64.7 ± 2.4) and they practiced less intense physical activity (5.8% vs. 21.5%). Logistic regression analyses showed a significant association between LINE-1 DNA methylation and metabolic status after adjustment for sex, age, BMI, and physical activity. Our study showed that lower LINE-1 DNA methylation levels were associated with a higher risk metabolic status worsening, independent of other classic risk factors. This finding highlights the potential role for epigenetic biomarkers as predictors of T2DM risk or other related metabolic disorders. 相似文献
9.
10.
《Epigenetics》2013,8(10):1322-1328
In the last years, epigenetic processes have emerged as a promising area of complex diseases research. DNA methylation measured in Long Interspersed Nucleotide Element 1 (LINE-1) sequences has been considered a surrogate marker for global genome methylation. New findings have suggested the potential involvement of epigenetic mechanisms in Type 2 diabetes (T2DM) as a crucial interface between the effects of genetic predisposition and environmental influences. Our study evaluated whether global DNA methylation predicted increased risk from T2DM or other carbohydrate metabolism disorders in a cohort study. We used a prospective cohort intervention study and a control group. We collected phenotypic, anthropometric, biochemical, and nutritional information from all subjects. Global LINE-1 DNA methylation was quantified by pyrosequencing technology. Subjects that did not improve their carbohydrate metabolism status showed lower levels of global LINE-1 DNA methylation (63.9 ± 1.7 vs. 64.7 ± 2.4) and they practiced less intense physical activity (5.8% vs. 21.5%). Logistic regression analyses showed a significant association between LINE-1 DNA methylation and metabolic status after adjustment for sex, age, BMI, and physical activity. Our study showed that lower LINE-1 DNA methylation levels were associated with a higher risk metabolic status worsening, independent of other classic risk factors. This finding highlights the potential role for epigenetic biomarkers as predictors of T2DM risk or other related metabolic disorders. 相似文献
11.
12.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation. 相似文献
13.
14.
On fertilisation, gametes undergo epigenetic reorganisation and re-establish totipotency. Here, we investigate links between chromatin remodelling and asymmetric maintenance of DNA methylation in the early mouse embryo. Using antibodies for lysine specific H3 methylation reveals that the male pronucleus is negative for di- and trimethyl H3-K9 yet the female is positive for these residues. However, the male is positive for monomethyl H3-K9 and H3-K27 and these signals increase during pronuclear maturation. Non-histone chromatin proteins of the Polycomb group are found in the paternal compartment as early as sperm decondensation. However, trimethyl H3-K27 is not observed in the male until the completion of DNA replication. Heterochromatin protein 1 beta (HP1beta) is abundant in the male pronucleus, despite the absence of di- and trimethyl H3-K9, and co-localises with monomethyl H3-K9. Recent evidence identifies monomethyl H3-K9 as the preferred substrate of Suvar39h, the histone methyl transferase (HMT) responsible for heterochromatic H3-K9 trimethylation. The association of HP1beta with monomethyl H3-K9 may assist in preventing further modification of H3-K9. Association of dimethylation but not trimethylation of H3-K9 with DNA methylation, in the female pronucleus, suggests a mechanistically significant link. These differences begin to provide a chromatin based explanation for paternal-specific active DNA demethylation and maternal specific protection in the mouse. 相似文献
15.
Dysregulation of microRNAs in cancer: Playing with fire 总被引:2,自引:0,他引:2
16.
17.
表遗传学研究进展及其应用 总被引:1,自引:0,他引:1
表遗传体系包括DNA甲基化、RNA干涉、基因组印迹和组蛋白密码等多方面。它们们在生物体生长发育过程中对基因表达和调控有重要作用,而且与生物体的防御机制和生物遗传信息的传递存在密切联系。表遗传在肿瘤上也有重要应用,表遗传机制的异常通过使癌遗传学途径基因失能与获能、增加基因组的不稳定性和印迹丢失等途径参与肿瘤的形成,同时也启发了对肿瘤防治的研究。就表遗传这一新的分子生物学研究领域的发展及最新研究进展进行了综述。 相似文献
18.
Pichler G Wolf P Schmidt CS Meilinger D Schneider K Frauer C Fellinger K Rottach A Leonhardt H 《Journal of cellular biochemistry》2011,112(9):2585-2593
Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA, the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1(-/-) embryonic stem cells did not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2 domains may contribute to a tighter epigenetic control of gene expression in differentiated cells. 相似文献
19.
Mansour A. Alghamdi Laith N. AL-Eitan Amneh H. Tarkhan Firas A. Al-Qarqaz 《Saudi Journal of Biological Sciences》2021,28(1):612-622
Infection with the human papillomaviruses (HPV) often involves the epigenetic modification of the host genome. Despite its prevalence among the population, host genome methylation in HPV-induced warts is not clearly understood. In this study, genome-wide methylation profiling was carried out on paired healthy skin and wart samples in order to investigate the effects that benign HPV infection has on gene methylation status. To overcome this gap in knowledge, paired wart (n = 12) and normal skin (n = 12) samples were obtained from Arab males in order to perform DNA extraction and subsequent genome-wide methylation profiling on the Infinium Methylation EPIC Bead Chip microarray. Analysis of differential methylation revealed a clear pattern of discrimination between the wart and normal skin samples. In warts, the most differentially methylated (DM) genes included long non-coding RNAs (AC005884, AL049646.2, AC126121.2, AP001790.1, and AC107959.3), microRNAs (MIR374B, MIR596, MIR1255B1, MIR26B, and MIR196A2),snoRNAs (SNORD114-22, SNORD70, and SNORD114-31), pseudogenes (AC069366.1, RNU4ATAC11P, AC120057.1, NANOGP3, AC106038.2, TPT1P2, SDC4P, PKMP3, and VN2R3P), and protein-coding genes (AREG, GJB2, C12orf71, AC020909.2, S100A8, ZBED2, FABP7, and CYSLTR1). In addition, pathway analysis revealed that, among the most differentially methylated genes, STAT5A, RARA, MEF2D, MAP3K8, and THRA were the common regulators. It can be observed that HPV-induced warts involve a clear and unique epigenetic alteration to the host genome. 相似文献
20.
《Cancer epidemiology》2014,38(5):576-582
Pancreatic cancer is a leading cause of cancer-related deaths worldwide. Methylation of DNA may influence risk or be a marker of early disease. The aim of this study was to measure the association between methylation of three DNA repetitive elements in white blood cell (WBC) DNA and pancreatic cancer.DNA from WBCs of pancreatic cancer cases (n = 559) and healthy unrelated controls (n = 603) were tested for methylation of the LINE-1, Alu and Sat2 DNA repetitive elements using MethyLight quantitative PCR assays. Odds ratios (ORs) and 95% confidence intervals (95%CI) between both continuous measures of percent of methylated sample compared to a reference (PMR) or quintiles of PMR and pancreatic cancer, adjusted for age, sex, smoking, BMI, alcohol and higher education, were estimated.The PMR for each of the three markers was higher in cases than in controls, although only LINE-1 was significantly associated with pancreatic cancer (OR per log unit = 1.37, 95%CI = 1.16–1.63). The marker methylation score for all three markers combined was significantly associated with pancreatic cancer (p-trend = 0.0006). There were no associations between measures of PMR and either presence of metastases, or timing of blood collection in relation to diagnosis, surgery, chemotherapy or death (all p > 0.1).We observed an association between methylation of LINE-1 in WBC DNA and risk of pancreatic cancer. Further studies are needed to confirm this association. 相似文献