首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine polyoxin-resistant mutants ofCochliobolus heterostrophus were isolated after ethyl methanesulphonate mutagenesis. All were highly resistant to polyoxin (MIC≥1,600 ppm). Crosses between the mutants and a wild-type strain revealed that the resistance trait was inherited to the offsprings in different fashions. Four of the mutant strains inherited polyoxin resistance in a 1∶1 segregation ratio, indicating that the phenotypes in these strains were due to alteration at a single locus. Allelism tests revealed four new loci,Pol1, Pol2, Pol3 andPol4, for polyoxin resistance in these mutant strains. The genes responsible for the phenotypes of the other five mutant strains were not determined, because of extremely slow growth of progenies in one cross, sterility in another cross, and inexplicable responses to polyoxin of the progenies in the other crosses. No linkage was detected between the genes for polyoxin resistance and mating type.  相似文献   

2.
Cochliobolus heterostrophus Pol2 and Pol5 mutants are pleiotropic, and each mutant gene is responsible for alterations of both unrelated phenotypes: reddish-brown pigmentation and polyoxin resistance. The three pigments accumulated in these mutants were isolated. Structural characterization by spectroscopic analyses indicated that these three pigments were polyhydroxyanthraquinones: emodin, chrysophanol, and citreorosein. Emodin is known to be an antidote against benzimidazole fungicide, although no antidoting activity against polyoxin was observed. Received: February 12, 2002 / Accepted: April 27, 2002  相似文献   

3.
Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx−/− cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.  相似文献   

4.
Six nonallelic genes have been discovered in rye, the recessive mutations of which lead to a lack of anthocyanin. Crosses with these mutants showed that 13 new anthocyaninless lines carry mutations in the gene vi1, whereas vi2/6 mutations were identified only in single cases. Inheritance of the vi1/6 mutations in the progeny of hybrids with the wild type (Line 7, L7) corresponds to a monohybrid segregation. Segregation for three of these mutations (vi2, vi4, and vi5) in hybrids with line 2 is characterized by anthocyaninless deficiency in plants. We discuss the reasons for such deviations and the previously published data for the identification of the six anthocyanin pigmentation genes in the rye using trisomic analysis.  相似文献   

5.
The porphyrias are disorders associated with inherited or acquired enzyme deficiencies in the heme biosynthetic pathway. The differential diagnosis is often difficult since the phenotype is very similar in some forms and the biochemical tests are not commonly available. Here we provide an update on the molecular diagnosis of porphyrias in Italy and a flow-chart to facilitate the identification of mutations in heme biosynthetic genes. The molecular analysis has allowed us to identify the molecular defect underlying the disease in 66 probands with different porphyrias [acute intermittent porphyria (AIP), variegate porphyria (VP), porphyria cutanea tarda (PCT), erythropoietic protoporphyria (EPP)]. No Italian patients with defects in coproporphyrinogen oxidise (CPOX) gene, responsible for hereditary coproporphyria (HCP), have been detected. The molecular characterization has been extended to 115 relatives with the identification of 55 asymptomatic mutation carriers and 60 normal subjects. We have so far identified 50 different mutations among 4 genes associated with the most common porphyrias showing a high molecular heterogeneity: 22 in the hydroxymethylbilane synthase (HMBS) gene (AIP), 7 in the protoporphyrinogen oxidase (PPOX) gene (VP), 16 in the uroporphyrinogen decarboxylase (UROD) gene (PCT) and 5 in the ferrochelatase (FECH) gene (EPP). Among the 50 molecular defects, 29 seem to be restricted to the Italian population.  相似文献   

6.
Mutations in the GEF2 gene of the yeast Saccharomyces cerevisiae have pleiotropic effects. The gef2 mutants display a petite phenotype. These cells grow slowly on several different carbon sources utilized exclusively or primarily by respiration. This phenotype is suppressed by adding large amounts of iron to the growth medium. A defect in mitochondrial function may be the cause of the petite phenotype: the rate of oxygen consumption by intact gef2 cells and by mitochondrial fractions isolated from gef2 mutants was reduced 60%–75% relative to wild type. Cytochrome levels were unaffected in gef2 mutants, indicating that heme accumulation is not significantly altered in these strains. The gef2 mutants were also more sensitive than wild type to growth inhibition by several divalent cations including Cu. We found that the cup5 mutation, causing Cu sensitivity, is allelic to gef2 mutations. The GEF2 gene was isolated, sequenced, and found to be identical to VMA3, the gene encoding the vacuolar H +-ATPase proteolipid subunit. These genetic and biochemical analyses demonstrate that the vacuolar H +-ATPase plays a previously unknown role in Cu detoxification, mitochondrial function, and iron metabolism.  相似文献   

7.
The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.  相似文献   

8.
9.
The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.  相似文献   

10.
In order to identify single nucleotide polymorphism and insertion/deletion mutations, we performed whole-genome re-sequencing of the enhanced l-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. In total, 142 single nucleotide polymorphisms and 477 insertion/deletion mutations were identified in the ATCC 21300 strain when compared to 3,434 predicted genes of the wild-type C. glutamicum ATCC 13032 strain. Among them, 110 transitions and 29 transversions of single nucleotide polymorphisms were found from genes of the ATCC 21300 strain. In addition, 11 genes, involved in the L-lysine biosynthetic pathway and central carbohydrate metabolism, contained mutations including single nucleotide polymorphisms and insertions/deletions. Interestingly, RT-PCR analysis of these 11 genes indicated that they were normally expressed in the ATCC 21300 strain. This information of genome-wide gene-associated variations will be useful for genome breeding of C. glutamicum in order to develop an industrial amino acid-producing strain with minimal mutation.  相似文献   

11.
12.
Thirteen reference genes were investigated to determine their stability to be used as a housekeeping in gene expression studies in skeletal muscle of chickens. Five different algorithms were used for ranking of reference genes and results suggested that individual rankings of the genes differed among them. The stability of the expression of reference genes were validated using samples obtained from the Pectoralis major muscle in chicken. Samples were obtained from chickens in different development periods post hatch and under different nutritional diets. For gene expression calculation the ΔΔCt approach was applied to compare relative expression of pairs of genes within each of 52 samples when normalized to mitochondrially encoded cytochrome c oxidase II (MT-CO2) target gene. Our findings showed that hydroxymethylbilane synthase (HMBS) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are the most stable reference genes while transferrin receptor (TFRC) and beta-2-microglobulin (B2M) ranked as the least stable genes in the Pectoralis major muscle of chickens. Moreover, our results revealed that HMBS and HPRT1 gene expression did not change due to dietary variations and thus it is recommended for accurate normalization of RT-qPCR data in chicken Pectoralis major muscle.  相似文献   

13.
14.
Mutants resistant to nikkomycin, an inhibitor of chitin biosynthesis, were isolated after exposure of wild-type spores of the fungus Phycomyces blakesleeanus to N-methyl-N′-nitro-N-nitrosoguanidine. Genetic analysis revealed that nikkomycin resistance was due to mutations in a single gene, chsA. Mutants and wild type grew equally well in the absence of nikkomycin. In contrast to the wild type, whose spore germination and mycelial growth were inhibited by 5 μM nikkomycin, chsA mutants grew reasonably well in the presence of 50 μM nikkomycin. Chitin synthesis in vivo was much less affected by the drug in the mutants than in the wild type. Resistance was not due to impaired uptake or detoxification of the drug. Analysis of the kinetics of chitin synthesis in vitro showed that the mutants had a decreased Ka for the allosteric activator, N-acetylglucosamine, and gross alterations in nikkomycin inhibition kinetics. These results indicate that chsA is the structural gene for chitin synthetase, or at least for the polypeptide that bears the catalytic and allosteric sites.  相似文献   

15.
Rice allene oxide synthase-1 mutants carrying F92L, P430A or F92L/P430A amino acid substitution mutations were constructed, recombinant mutant and wild type proteins were purified and their substrate preference, UV–vis spectra and heme iron spin state were characterized. The results show that the hydroperoxide lyase activities of F92L and F92L/P430A mutants prefer 13-hydroperoxy substrate to other hydroperoxydienoic acids or hydroperoxytrienoic acids. The Soret maximum was completely red-shifted in P430A and F92L/P430A mutants, but it was partially shifted in the F92L mutant. ESR spectral data showed that wild type, F92L and P430A mutants occupied high and low spin states, while the F92L/P430A mutant occupied only low spin state. The extent of the red shift of the Soret maximum increased as the population of low spin heme iron increased, suggesting that the spectral shift reflects the high to low transition of heme iron spin state in rice allene oxide synthase-1. Relative to wild type allene oxide synthase-1, the hydroperoxide lyase activities of F92L and F92L/P430A are less sensitive to inhibition by imidazole with (13S or 9S)-hydroperoxydienoic acid as substrate and more sensitive than wild type with (13S)-hydroperoxytrienoic acid as substrate. Our results suggest that hydroperoxydienoic acid is the preferred substrate for the hydroperoxide lyase activity and (13S)-hydroperoxytrienoic acid is the preferred substrate for allene oxide synthase activity of allene oxide synthase-1.  相似文献   

16.
The nematode-trapping fungus Arthrobotrys oligospora is able to produce extracellular protease that degrades the body walls of parasitic nematode larvae found in livestock and immobilizes the nematodes. Our aim was to obtain a strain of A. oligospora with a strong ability to trap nematodes by production of high levels of extracellular protease. A wild type strain of A. oligospora was subjected to mutagenic treatments involving low-energy ion beam implantation to generate mutants. Among these mutants, A. oligospora N showed high efficiency in trapping nematodes and was also able to secrete more extracellular protease, helping it to penetrate and digest the body walls of larvae. This work represents the first application of low-energy ion beams to generate mutations in a nematode-trapping fungus, and provides a new method of obtaining a fungus with high potential application.  相似文献   

17.
A 7.1 kb EcoRI fragment from Azospirillum brasilense, that hybridized with a probe carrying the ntrBC genes from Bradyrhizobium japonicum, was cloned. The nucleotide sequence of a 3.8 kb subfragment was established. This led to the identification of two open reading frames, encoding polypeptides of 401 and 481 amino acids, that were similar to NtrB and NtrC, respectively. A broad host range plasmid containing the putative Azospirillum ntrC gene was shown to restore nitrogen fixation under free-living conditions to a ntrC-Tn5 mutant of Azorhizobium caulinodans. Several Tn5 insertion mutants were isolated in the ntrBC coding region in A. brasilense. These mutants were prototrophic and Nif+. However, their nitrogenase activity was slightly lower than in the wild type and they were unable to grow on nitrate as sole nitrogen source. Under microaerobiosis and in the absence of ammonia, a nifA-lacZ fusion was expressed in the mutants at about 60% of the level in the wild type. In the presence of ammonia, the fusion was similarly expressed (60% of the maximum) both in the wild type and mutants. Addition of ammonia to a nitrogen-fixing culture of ntrBC mutants did not abolish nitrogenase activity, in contrast with the wild type. It thus appears that in Azospirillum the ntrBC genes are not essential for nitrogen fixation, although NtrC controls nifA expression to some extent. They are, however, required for the switch-off of nitrogenase activity.  相似文献   

18.
We demonstrated recently that dominant negative mutants of rat DNA polymerase β (Pol β) interfere with repair of alkylation damage in Saccharomyces cerevisiae. To identify the alkylation repair pathway that is disrupted by the Pol β dominant negative mutants, we studied the epistatic relationship of the dominant negative Pol β mutants to genes known to be involved in repair of DNA alkylation damage in S. cerevisiae. We demonstrate that the rat Pol β mutants interfere with the base excision repair pathway in S. cerevisiae. In addition, expression of one of the Pol β dominant negative mutants, Pol β-14, increases the spontaneous mutation rate of S. cerevisiae whereas expression of another Pol β dominant negative mutant, Pol β-TR, does not. Expression of the Pol β-14 mutant in cells lacking APN1 activity does not result in an increase in the spontaneous mutation rate. These results suggest that gaps are required for mutagenesis to occur in the presence of Pol β-14 but that it is not merely the presence of a gap that results in mutagenesis. Our results suggest that mutagenesis can occur during the gap-filling step of base excision repair in vivo.  相似文献   

19.
Time to maturity is a critical trait in sorghum (Sorghum bicolor) breeding, as it determines whether a variety can be grown in a particular cropping system or ecosystem. Understanding the nucleotide variation and the mechanisms of molecular evolution of the maturity genes would be helpful for breeding programs. In this study, we analyzed the nucleotide diversity of Ma3, an important maturity gene in sorghum, using 252 cultivated and wild sorghum materials from all over the world. The nucleotide variation and diversity were analyzed based both on race- and usage-based groups. We also sequenced 12 genes around the Ma3 gene in 185 of these materials to search for a selective sweep and found that purifying selection was the strongest force on Ma3, as low nucleotide diversity and low-frequency amino acid variants were observed. However, a very special mutation, described as ma3R, seemed to be under positive selection, as indicated by dramatically reduced nucleotide variation not only at the loci but also in the surrounding regions among individuals carrying the mutations. In addition, in an association study using the Ma3 nucleotide variations, we detected 3 significant SNPs for the heading date at a high-latitude environment (Beijing) and 17 at a low-latitude environment (Hainan). The results of this study increases our understanding of the evolutionary mechanisms of the maturity genes in sorghum and will be useful in sorghum breeding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号