首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Aspergillus several types of test systems have been developed for detection of chemicals which induce aneuploidy and/or malsegregation of chromosomes. Results from 23 papers were reviewed in which numerical data for 42 chemicals had been reported. The test systems fall into two groups. One group includes all purely genetic tests that detect euploid mitotic segregants from heterozygous diploids and identify these either as products of malsegregation of chromosomes or as products of crossing-over (13 papers, several reviewed in detail previously; K?fer et al. (1982) and Scott et al. (1982)). The other group includes tests that treat haploid or diploid strains and detect aneuploids as unstable abnormally growing segregants which can be identified as specific disomics or trisomics by their characteristic phenotypes. In addition, such tests characterize abnormal segregants from heterozygous diploids by correlating phenotypes with patterns of genetic segregation in spontaneous euploid sectors. This analysis makes it possible to distinguish between induced primary aneuploidy of whole chromosomes and partial tri- or monosomy resulting from chromosome breakage and secondary spontaneous malsegregation (10 papers). Based on results of both types of tests, it is postulated that chemicals which cause increases of euploid malsegregants, but not of crossovers, normally induce aneuploids as primary products (as shown for 7 of the 14 cases). These include compounds which damage spindles or membranes (especially the well-known haploidizing agents) and generally are effective only when growing cells are exposed. (8 chemicals that may belong in this category could not be classified for certain, because information was insufficient.) On the other hand, chemicals which cause increases of all types of euploid segregants (11 cases), mostly induce drastic mutations and aberrations as primary effects and cause spontaneous malsegregation or crossing-over only as secondary events (as demonstrated for radiation-induced abnormals). In addition, a few chemicals were negative, because they increased only crossing-over or showed no increased segregation at all at concentrations which reduced survival or growth rate (9 cases). Recommendations are made for standardization of methods and protocols. New tester strains and specific procedures are outlined which should be useful for conclusive tests of chemicals that may induce aneuploidy.  相似文献   

2.
E K?fer 《Mutation research》1986,164(3):145-166
A system of tests with the ascomycete Aspergillus nidulans was devised that can detect 3 primary effects of genotoxic agents: (1) increases in mitotic crossing-over; (2) induced aneuploidy; and (3) clastogenic effects which cause chromosomal imbalance. Conidia of a new diploid tester strain, heterozygous for 4 recessive markers which alter conidial color, are treated and plated onto nonselective media. In cases of induced crossing-over, large color segments are found in normal green colonies, frequently adjacent to reciprocal twin segments. In contrast, both malsegregation and chromosome breakage produce unbalanced types which grow poorly and segregate further. Cases with yellow segregants are replated and their secondary diploid sectors tested for markers which are located on both chromosome arms in coupling with yA. Induced aneuploidy can be distinguished from chromosome breakage by the pattern of marker segregation. Any aneuploid type will produce euploid sectors solely by segregation of whole chromosomes; trisomic colonies (yA / yA / +) will show 1:2 ratios for yellow (homozygous yA) to parental green (yA/+) sectors and have characteristic phenotypes. Other induced unbalanced types, if heterozygous for deletions or aberrations may produce yellow diploid sectors by secondary crossing-over as well as by nondisjunction and such cases show unique patterns of genetic segregation and non- predictable phenotypes. As a complementary test, haploid strains are treated and induced abnormally growing types are replated and classified by phenotype. Aneuploids are unstable and produce many normal sectors, and some of these disomic or trisomic types can be visually identified.In contrast, induced deletions are lethal, and duplications or 'morphological' mutants show much more stable abnormal phenotypes. This test system was used to characterize the primary effects of gamma-rays and chloral hydrate. Results and evidence were as follows: (1) A dose-dependent increase of color segments resulting from reciprocal crossing-over was found after treatment of dividing nuclei in germinating diploid conidia with gamma-rays, but not with chloral hydrate. (2) Highly aneuploid and polyploid types were induced in diploid and haploid germinating conidia by chloral hydrate but not to any significant extent by gamma-rays. (3) gamma-Rays caused a dose- dependent increase off abnormally growing colonies when dormant or germinating diploid conidia were treated. These colonies produced secondary euploid sectors by spontaneous nondisjunction and frequently also by crossing-over, which provided evidence for induced semidominant and recessive lethal mutations of many types.  相似文献   

3.
To identify, with certainty, the primary genotoxic effects of ethanol, condidia from diploid strains of Aspergillus nidulans were treated during early germination with ethyl alcohol, and all the resulting segregants from large samples were analysed in detail. Results were identical whether technical grade (95%), or highly purified 'absolute', alcohol was diluted to obtain the effective low levels of ethanol (3-6%). This makes it unlikely that trace contaminants, rather than ethanol itself, caused the observed induced segregation. At the most effective concentrations survival was about 50%, but over half of the colonies were abnormal and showed sectoring phenotypes. Higher concentrations were too inhibitory for growth. In practically all cases, when 'abnormals' were replated, aneuploids of various types were recovered. Most aneuploids were hyperdiploid, including a fraction of simple trisomics, and some were even polyploid types. All showed chromosomal-type segregation in diploid sectors, often segregating for genetic markers of many different chromosomes. Mitotic crossing-over was slightly increased, but probably not induced, since an equally high spontaneous frequency was observed among replated aneuploid types. To eliminate conclusively the possibility that chromosome breakage was the primary effect of ethanol, which might indirectly produce aneuploid-like types, haploid conidia were also treated. Up to 8% abnormals, mainly hyperhaploids, were obtained (at about 20-50% survival). When diploid and haploid strains were treated identically with ethanol in liquid media after a few hours of pregermination, frequencies of abnormals were similar for short treatments, but higher in diploid strains for longer ones (10-20% aneuploids). The abnormal colonies from the haploid strain were replated and visually identified: about 2/3 were typical n + 1 hyperhaploids, and most others were n + 2 or 3 or more, including a few 2n + 1 trisomics. It is concluded that as a primary effect, alcohol interferes with, and probably arrests, mitotic segregation, and causes chromosome missegregation and nondisjunction. In most cases, the resulting nuclei contain increased numbers of chromosomes and show high frequencies of chromosome loss.  相似文献   

4.
The state of aneuploidy test methodology was appraised by the U.S. Environmental Protection Agency in 1986 in analyzing published data. In Saccharomyces cerevisiae 9 chemicals were reported to be conclusive positive for aneuploidy induction in either mitotic or meiotic cells. We reevaluated these 9 chemicals using Saccharomyces cerevisiae D61.M, a strain that detects mitotic chromosome malsegregation. Acetone (lowest effective dose (LED): 40 microliters/ml), bavistan (LED: 5 micrograms/ml), benomyl (LED: 30 micrograms/ml) and oncodazole (LED: 4 micrograms/ml) induced a dose-dependent increase in the frequencies of chromosomal malsegregation. Ethyl methanesulfonate (EMS; highest tested dose (HTD): 1000 micrograms/ml) and methyl methanesulfonate (MMS; HTD: 100 micrograms/ml) did not induce malsegregation but were both potent inducers of other genetic events, detected by an increase in the frequencies of cyhR cells. No increases in both endpoints (malsegregation and other genetic events) were observed after treatment of S. cerevisiae D61.M with cyclophosphamide (CP; HTD: 16 mg/ml) in the absence of S9, p-D,L-fluorophenylalanine (p-FPA; HTD: 250 micrograms/ml) and phorbol-12-myristate-13-acetate (TPA; HTD: 50 micrograms/ml). A marginal increase in the frequency of mitotic chromosome malsegregation was obtained with cyclophosphamide in the presence of S9. Thus our test results largely disagree with those previously published by various authors and taken as conclusive by EPA. We interpret the discrepancies to be due to lack of properly controlled testing (e.g., no check for multiple mutational events). Only with a careful test design it is possible to discriminate between chemicals inducing only chromosome loss and no other genetic effects (e.g., acetone, oncodazole), chemicals inducing a variety of genetic damage but no chromosome loss (e.g., EMS, MMS) and chemicals inducing neither chromosome loss nor other genetic events in yeast (e.g., TPA, p-FPA).  相似文献   

5.
In experiments involving different germ-cell stages, we had previously found meiotic prophase of the male mouse to be vulnerable to the induction of several types of genetic damage by the topoisomerase-II inhibitor etoposide. The present study of etoposide effects involved two end points of meiotic events known to occur in primary spermatocytes--chromosomal crossing-over and segregation. By following assortment of 13 microsatellite markers in two chromosomes (Ch 7 and Ch 15) it was shown that etoposide significantly affected crossing-over, but did not do so in a uniform fashion. Treatment generally changed the pattern for each chromosome, leading to local decreases in recombination, a distal shift in locations of crossing-over, and an overall decrease in double crossovers; at least some of these results might be interpreted as evidence for increased interference. Two methods were used to explore etoposide effects on chromosome segregation: a genetic experiment capable of detecting sex-chromosome nondisjunction in living progeny; and the use of FISH (fluorescence in situ hybridization) technology to score numbers of Chromosomes X, Y, and 8 in spermatozoa. Taken together these two approaches indicated that etoposide exposure of pachytene spermatocytes induces malsegregation, and that the findings of the genetic experiment probably yielded a marked underestimate of nondisjunction. As indicated by certain segregants, at least part of the etoposide effect could be due to disrupted pairing of achiasmatic homologs, followed by precocious sister-centromere separation. It has been shown for several organisms that absent or reduced levels of recombination, as well as suboptimally positioned recombination events, may be associated with abnormal segregation. Etoposide is the only chemical tested to date for which living progeny indicates an effect on both male meiotic crossing-over and chromosome segregation. Whether, however, etoposide-induced changes in recombination patterns are direct causes of the observed malsegregation requires additional investigation.  相似文献   

6.
Genetic effects of 5-azacytidine in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
The base analog 5-azacytidine induced a variety of genetic and epigenetic effects in different organisms. It was tested in two diploid strains of the yeast Saccharomyces cerevisiae to study the induction of point mutation, mitotic reciprocal crossing-over, mitotic gene conversion (strain D7) and mitotic aneuploidy (strain D61.M). It was used on cells growing in its presence for 4-5 generations. There was a strong induction of both types of mitotic recombination and point mutation. However, there was no induction of mitotic chromosomal malsegregation under the same conditions.  相似文献   

7.
J Szabad 《Mutation research》1986,164(5):305-326
A 2-generation assay is described for the detection of aneuploidy in the germ-line cells of Drosophila melanogaster. Larvae and adult females that carry marker mutations are exposed to test compounds, and the F2 generation is scored for exceptional phenotypes. As a consequence of nondisjunction and/or loss of the sex chromosomes, 5 exceptional phenotypes appear. These phenotypes are often indicative of specific types of nondisjunction. Based on the time course and the pattern of exception production of the treated parents, aneuploidy due to meiotic and mitotic defects can be separated. The genetic analysis of the exceptions reveals whether nondisjunction has occurred due to failure of the spindle fibres to disjoin chromosomes or attachment of the chromosomes. The described assay is an extension of the so-called Somatic Mutation and Recombination Test (SMART) and allows screening for different genetic endpoints: aneuploidy, recombinogenic and mutagenic activities in the same treatment. The effects of colchicine and EMS are described with respect to the induction of aneuploidy in the germ line and somatic mutation and recombination in the eyes, wings and female germ-line cells. Colchicine induces aneuploidy in the germ-line cells while the frequency of mosaic spots does not increase after colchicine treatment. This result suggests that aneuploidy plays little (if any) role in the formation of mosaic spots. Colchicine induces nondisjunction in the mitotically rather than in the meiotically dividing germ-line cells. EMS, as expected, induces high frequency of somatic mutation and recombination but not aneuploidy in the female germ line.  相似文献   

8.
Chromosomal lagging and non-disjunction are the main mechanisms of chromosomal malsegregation at mitosis. To date, the relative importance of these two events in the genesis of spontaneous or induced aneuploidy has not been fully elucidated. A methodology based on in situ hybridization with centromeric probes in binucleated lymphocytes was previously developed to provide some insight into this matter. With this method, both chromosomal loss and non-disjunction can be simultaneously detected by following the distribution of specific chromosomes in the nuclei and micronuclei of binucleated cells. In this study, this approach was used for studying the role of chromosomal loss and non-disjunction in the age-related malsegregation of sex chromosomes in females. For this purpose, cultures of cytokinesis-blocked lymphocytes were established from 12 healthy women ranging in age from 25 to 56. The occurrence of malsegregation of X chromosomes in vitro was estimated in binucleated cells that contained four signals, which orginates from the division of normal disomic cells. In this cell population, the frequencies of X chromosome loss and non-disjunction ranged from 0% to 1.69% (mean 0.75%), and from 0.20% to 1.33% (mean 0.57%), respectively. This indicates that both events contribute to malsegregation of X chromosomes in vitro. Moreover, a small but not negligible fraction of binucleated cells with two or six copies of the X chromosome was noticed in all donors. These cells, which are thought to arise from parental monosomic and trisomic types, may indicate the malsegregation of X chromosomes in vivo. The frequency of X chromosome aneuploidy both in vivo and in vitro significantly correlated with the age of donors. Analysis of chromosomal distribution in unbalanced cells demonstrated that both X homologues were frequently involved. The frequency of such multiple events (0.17%) was far greater than that expected by mere chance, indicating a tendency to multiple malsegregation events in the cell population investigated. Finally, parallel analysis of the segregation of chromosomex X and 1 in five of the donors confirmed the greater (about tenfold) susceptibility of X chromosomes to malsegregate compared with autosomes.  相似文献   

9.

Key message

We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences.

Abstract

Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.
  相似文献   

10.
Hydroxyurea induces mitotic gene conversion, mitotic crossing-over, reverse mutation, respiration-deficient petite mutants and aneuploidy in growing cultures of Saccharomyces cerevisiae. Evidence is presented indicating that induction rather than selection is responsible for the increase in frequency of the genetic end points measured. Complications concerning the detection of aneuploidy in the presence of other genetic effects are described, and the need for following the complete protocol for confirmation of the aneuploids in any chemical screening program is emphasized.  相似文献   

11.
10 "false negative" chemical carcinogens, i.e. ineffective in bacterial mutagenicity assays, were thoroughly investigated for their genotoxic activity in the mould Aspergillus nidulans. Forward mutations (methionine suppressors), mitotic crossing-over and chromosome malsegregation were the end-points scored. Positive results were obtained in tests for the induction of mitotic segregation with benzene, ethylenethiourea and urethane, which increased the frequency of abnormal presumptive aneuploid colonies with euploid sectors showing whole chromosome segregation (i.e. non-disjunctional diploids and haploids). The same compounds were ineffective in increasing the frequency of mitotic crossing-over or forward mutations. The other chemical carcinogens investigated, namely acetamide, amitrole, dieldrin, heptachlor epoxide, nitrilotriacetic acid, p,p'-DDT and thiourea were ineffective both as inducers of forward mutations and mitotic segregation.  相似文献   

12.
The development and utilization of a monochromosomal hybrid cell assay for detecting aneuploidy and chromosomal aberrations are described. The monochromosomal hybrid cell lines were produced by a two-step process involving transfer of a marker bacterial gene to a human chromosome and then by integration of that human chromosome into a mouse complement of chromosomes through microcell fusion. For chemically induced aneuploidy, the segregation of a single human chromosome among mouse chromosomes is used as a cytogenetic marker. The genetic assay for aneuploidy is based on the ability of the cells to grow in a medium that selects for the loss of the human chromosome. The assay for clastogenicity is based on survival of the cells after treatment with the chemicals in medium that selects for retention of the human chromosome but loss of its segment containing diphtheria toxin locus. The assays greatly simplify the detection of chromosomal aberrations induced by environmental factors at low-dose levels.  相似文献   

13.
Zhou SQ 《Hereditas》2003,138(1):65-72
The aneuploidy of Gossypium hirsutum L. (upland cotton) aneusomatics were obtained by induced parthenogenesis. These aneuploids could grow and set seeds normally. In the process of meiosis there appeared large quantities of heteromorphic pairs and multivalent chromosomes and many cases of cytomixis and multisperm fertilization occurred. The aneuploids produced offsprings through sexual propagation. We explored penetratingly the questions how and why these aneuploids could survive. Through this research, we found that the upland cotton possessed an immense latent capacity to adapt to adverse environments. More importantly, in the case of the upland cotton, we discovered that the genetic pattern of the polyploid differs in some respects from that of the diploid.  相似文献   

14.
Three types of mitotic recombination can be studied in Aspergillus nidulans and Saccharomyces cerevisiae: (1) The classical type of reciprocal mitotic crossing-over which can be detected when it occurs between non-sister chromatids at the four-strand stage followed by co-segregation of a crossing-over and a non-crossing-over chromatid in the subsequent mitotic division. Consequently, mitotic crossing-over reflects cellular responses to primary genetic damage in the G2 phase of the cell cycle. (2) Mitotic gene conversion is a unidirectional event of a localized transfer of genetic information between non-sister chromatids which in yeast can extend to segments of up to 18 cM and even beyond 22 cM in Aspergillus nidulans. Mitotic gene conversion can also occur between unreplicated chromatids and lead to the expression of the newly created genotype without any need for a subsequent mitotic cell division. It reflects a cellular response in G1. (3) Mitotic sister-strand gene conversion can be studied in a recently constructed strain with the same technical ease as classical non-sister chromatid gene conversion. It can be induced by chemicals which do not induce mutation in the Salmonella system and non-sister chromatid gene conversion. Mitotic segregation in Saccharomyces cerevisiae results almost exclusively from crossing-over and gene conversion whereas mitotic chromosomal malsegregation contributes only very little. In contrast to this, in Aspergillus nidulans, both processes contribute considerably so that mitotic segregants always have to be tested for their mechanistic origin.  相似文献   

15.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

16.
The antifungal and immunosuppressive drug rapamycin arrests the cell cycle in G1-phase in both yeast and mammalian cells. In mammalian cells, rapamycin selectively inhibits phosphorylation and activation of p70 S6 kinase (p70S6K), a protein involved in the translation of a subset of mRNAs, without affecting other known kinases. We now report that rapamycin causes chromosome malsegregation in mammalian and yeast cells. Chromosome malsegregation was determined by metaphase chromosome analysis of human lymphocytes and lymphoblasts, detection of CREST-positive micronuclei in human lymphoblasts and Chinese hamster embryonic fibroblast (CHEF) cells, and selection of doubly prototrophic cells in a specially constructed yeast strain. The number of ana-telophases with displaced chromosomes and interphase and mitotic cells with an irregular number of centrosomes was also determined in CHEF cells. In quiescent mammalian cells (human lymphocytes and CHEF cells) induced with growth factor to re-enter the cell cycle, rapamycin was effective when cells were exposed at the time of p70S6K activation. In yeast, rapamycin was more effective when treatment was started in G1- than in G2-synchronized cells. Cells from ataxia telangiectasia (A-T) patients are characterized by chromosome instability and have recently been found to be resistant to the growth-inhibiting effect of rapamycin. We found that an A-T lymphoblastoid cell line was also resistant to the induction of chromosome malsegregation by rapamycin, but the level of spontaneous aneuploidy was higher than in normal cells. In yeast, the induction of chromosome malsegregation was dependent on the presence of a wild-type TUB2 gene, encoding the β-subunit of tubulin. The finding that rapamycin acts in different cell types and organisms suggests that the drug affects a conserved step important for proper segregation of chromosomes. One or more proteins required for chromosome segregation could be under the control of the rapamycin-sensitive pathway. Received: 3 August 1998 / Accepted: 20 August 1998  相似文献   

17.
E K?fer 《Mutation research》1990,241(1):49-66
Both bleomycin, an antineoplastic drug, and botran (2,6-dichloro-4-nitro-aniline), a fungicide, are known to inhibit growth and induce genetic segregation in diploid tester strains of Aspergillus nidulans when present in agar media. To identify primary effects, samples of induced apparent crossover types were analysed in detail. For both compounds, coincident and consecutive events of mitotic crossing-over were found to be very frequent and such events showed a random distribution among isolated colour sectors. In the case of botran, a thorough search for imbalanced precursor types was negative and recessive lethals were found only rarely. Such segregants are therefore unlikely the result of terminal deletions. For bleomycin, induction of reciprocal crossing-over was confirmed by treatments of germinating conidia. On plating to normal growth medium, crossover segregants showed up as coloured half- or quarter-colonies, including some "twin spots". Whole coloured colonies were also frequent and these increased with dose levels which caused decreasing survival and increasing frequencies of abnormal colonies. Analysis of large fractions of such "abnormals" identified aneuploids in all cases. While botran, in plate tests, also increased haploid segregants and disomic precursors could be found, tests of germinating conidia "in liquid" were inconclusive, because botran is insoluble in water. Some increases of aneuploids were observed, but only when botran and the solvent DMSO both were present at increased levels.  相似文献   

18.
Individuals carrying an aberrant number of chromosomes can vary widely in their expression of aneuploidy phenotypes. A major unanswered question is the degree to which an individual’s genetic makeup influences its tolerance of karyotypic imbalance. Here we investigated within-species variation in aneuploidy prevalence and tolerance, using Saccharomyces cerevisiae as a model for eukaryotic biology. We analyzed genotypic and phenotypic variation recently published for over 1,000 S. cerevisiae strains spanning dozens of genetically defined clades and ecological associations. Our results show that the prevalence of chromosome gain and loss varies by clade and can be better explained by differences in genetic background than ecology. The relationships between lineages with high aneuploidy frequencies suggest that increased aneuploidy prevalence emerged multiple times in S. cerevisiae evolution. Separate from aneuploidy prevalence, analyzing growth phenotypes revealed that some genetic backgrounds—such as the European Wine lineage—show fitness costs in aneuploids compared to euploids, whereas other clades with high aneuploidy frequencies show little evidence of major deleterious effects. Our analysis confirms that chromosome gain can produce phenotypic benefits, which could influence evolutionary trajectories. These results have important implications for understanding genetic variation in aneuploidy prevalence in health, disease, and evolution.  相似文献   

19.
The yeast Saccharomyces cerevisiae is a unicellular fungus that can be cultured as a stable haploid or a stable diploid . Diploid cultures can be induced to undergo meiosis in a synchronous fashion under well-defined conditions. Consequently, yeasts can be used to study genetic effects both in mitotic and in meiotic cells. Haploid strains have been used to study the induction of point mutations. In addition to point mutation induction, diploid strains have been used for studying mitotic recombination, which is the expression of the cellular repair activities induced by inflicted damage. Chromosomal malsegregation in mitotic and meiotic cells can also be studied in appropriately marked strains. Yeast has a considerable potential for endogenous activation, provided the tests are performed with appropriate cells. Exogenous activation has been achieved with S9 rodent liver in test tubes as well as in the host-mediated assay, where cells are injected into rodents. Yeast cells can be recovered from various organs and tested for induced genetic effects. The most commonly used genetic end point has been mitotic recombination either as mitotic crossing-over or mitotic gene conversion. A number of different strains are used by different authors. This also applies to haploid strains used for monitoring induction of point mutations. Mitotic chromosome malsegregation has been studied mainly with strain D6 and meiotic malsegregation with strain DIS13 . Data were available on tests with 492 chemicals, of which 249 were positive, as reported in 173 articles or reports. The genetic test/carcinogenicity accuracy was 0.74, based on the carcinogen listing established in the Gene-Tox Program. The yeast tests supplement the bacterial tests for detecting agents that act via radical formation, antibacterial drugs, and other chemicals interfering with chromosome segregation and recombination processes.  相似文献   

20.
Induction of aneuploidy by nickel sulfate in V79 Chinese hamster cells   总被引:4,自引:0,他引:4  
Ohshima S 《Mutation research》2001,492(1-2):39-50
The ability of nickel sulfate (NiSO(4)) to induce chromosome aneuploidy was investigated in vitro using the V79 Chinese hamster cell line. V79 cells were treated with 100-400 microM NiSO(4) for 24h, and monitored up to 72 h following treatment with a chromosome aberration assay, a micronuclei assay using antikinetochore antibodies (CREST assay) and an anaphase/telophase assay.Aneuploid cells were induced in a significant fraction of the cell population 24-48 h following treatment with nickel sulfate. The majority of these cells were hyperdiploid. In addition, nickel sulfate caused increased frequency of cells with kinetochore-positive micronuclei as well as kinetochore-negative micronuclei. Abnormal chromosome segregation such as lagging chromosomes, chromosome bridges and asymmetric segregation were also observed in more than 50% of anaphase or telophase cells following treatment with NiSO(4). The incidences of these abnormalities were dose-dependent in general, although the effects were prominent in a sublethal dose.These results indicate that NiSO(4) has the ability to induce aneuploidy in V79 cells. In addition, the results in anaphase/telophase assay suggest that the compound may have an effect on spindle apparatus, which could result in aneuploidy following abnormal chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号