首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 localizes to cellular structures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10 and disrupts their integrity by inducing the degradation of PML. There are six PML isoforms with different C-terminal regions in ND10, of which PML isoform I (PML.I) is the most abundant. Depletion of all PML isoforms increases the plaque formation efficiency of ICP0-null mutant HSV-1, and reconstitution of expression of PML.I and PML.II partially reverses this improved replication. ICP0 also induces widespread degradation of SUMO-conjugated proteins during HSV-1 infection, and this activity is linked to its ability to counteract cellular intrinsic antiviral resistance. All PML isoforms are highly SUMO modified, and all such modified forms are sensitive to ICP0-mediated degradation. However, in contrast to the situation with the other isoforms, ICP0 also targets PML.I that is not modified by SUMO, and PML in general is degraded more rapidly than the bulk of other SUMO-modified proteins. We report here that ICP0 interacts with PML.I in both yeast two-hybrid and coimmunoprecipitation assays. This interaction is dependent on PML.I isoform-specific sequences and the N-terminal half of ICP0 and is required for SUMO-modification-independent degradation of PML.I by ICP0. Degradation of the other PML isoforms by ICP0 was less efficient in cells specifically depleted of PML.I. Therefore, ICP0 has two distinct mechanisms of targeting PML: one dependent on SUMO modification and the other via SUMO-independent interaction with PML.I. We conclude that the ICP0-PML.I interaction reflects a countermeasure to PML-related antiviral restriction.  相似文献   

2.
3.
Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100 and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO conjugates and PIAS2β, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular defence against invading pathogen DNA that is regulated through the SUMO modification pathway.  相似文献   

4.
Herpes simplex virus (HSV) 1 disaggregates the nuclear domain 10 (ND10) nuclear structures and disperses its organizing promyelocytic leukemia protein (PML). An earlier report showed that ectopic overexpression of PML precludes the disaggregation of ND10 but has no effect on viral replication. PML has been reported to mediate the effects of interferon (IFN) and viral mutants lacking ICP0 (Delta alpha 0 mutants). To test the hypothesis that HSV disaggregates ND10 structures and disperses PML to preclude IFN-mediated antiviral effects, we tested the accumulation of viral proteins and virus yields from murine PML(+/+) and PML(-/-) cells mock treated or exposed to IFN-alpha, IFN-gamma, or both and infected with the wild-type or Delta alpha 0 mutant virus. We report the following results. (i) The levels of growth of wild-type and mutant viruses and of accumulation of viral proteins were not significantly different in untreated PML(+/+) and PML(-/-) cells. (ii) Major effects of IFN-alpha and -gamma were observed in PML(+/+) cells infected with the Delta alpha 0 mutant virus, and more minor effects were observed in cells infected with the wild-type virus. The effects of the IFNs on either wild-type or the mutant virus in PML(-/-) cells were minimal. (iii) The mixture of IFN-alpha and -gamma was more effective than either IFN alone, but again, the effect was more drastic in PML(+/+) cells than in PML(-/-) cells. We concluded that the anti-HSV state induced by exogenous IFN is mediated by PML and that the virus targets the ND10 structures and disseminates PML in order to preclude the establishment of the antiviral state induced by IFNs.  相似文献   

5.
Nuclear domain 10 (ND10), also referred to as nuclear bodies, are discrete interchromosomal accumulations of several proteins including promyelocytic leukemia protein (PML) and Sp100. In this study, we investigated the mechanism of ND10 assembly by identifying proteins that are essential for this process using cells lines that lack individual ND10-associated proteins. We identified the adapter protein Daxx and BML, the RecQ helicase missing in Bloom syndrome, as new ND10-associated proteins. PML, but not BLM or Sp100, was found to be responsible for the proper localization of all other ND10-associated proteins since they are dispersed in PML-/- cells. Introducing PML into this cell line by transient expression or fusion with PML-producing cells recruited ND10-associated proteins into de novo formed ND10 attesting to PMLs essential nature in ND10 formation. In the absence of PML, Daxx is highly enriched in condensed chromatin. Its recruitment to ND10 from condensed chromatin requires a small ubiquitin-related modifier (SUMO-1) modification of PML and reflects the interaction between the COOH-terminal domain of Daxx and PML. The segregation of Daxx from condensed chromatin in the absence of PML to ND10 by increased accumulation of SUMO-1-modified PML suggests the presence of a variable equilibrium between these two nuclear sites. Our findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML.  相似文献   

6.
Promyelocytic leukemia (PML) nuclear bodies (also known as ND10) are nuclear substructures that contain several proteins, including PML itself, Sp100, and hDaxx. PML has been implicated in many cellular processes, and ND10 are frequently associated with the replicating genomes of DNA viruses. During herpes simplex virus type 1 (HSV-1) infection, the viral regulatory protein ICP0 localizes to ND10 and induces the degradation of PML, thereby disrupting ND10 and dispersing their constituent proteins. ICP0-null mutant viruses are defective in PML degradation and ND10 disruption, and concomitantly they initiate productive infection very inefficiently. Although these data are consistent with a repressive role for PML and/or ND10 during HSV-1 infection, evidence in support of this hypothesis has been inconclusive. By use of short interfering RNA technology, we demonstrate that depletion of PML increases both gene expression and plaque formation by an ICP0-negative HSV-1 mutant, while having no effect on wild-type HSV-1. We conclude that PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0.  相似文献   

7.
During the early stages of herpes simplex virus type 1 (HSV-1) infection, viral immediate-early regulatory protein ICP0 localizes to and disrupts cellular nuclear structures known as PML nuclear bodies or ND10. These activities correlate with the functions of ICP0 in stimulating lytic infection and reactivating quiescent HSV-1. The disruption of ND10 occurs because ICP0 induces the loss of the SUMO-1-modified forms of PML and the subsequent proteasome-mediated degradation of the PML protein. The functions of ICP0 are largely dependent on the integrity of its zinc-binding RING finger domain. Many RING finger proteins have been found to act as ubiquitin E3 ligase enzymes, stimulating the production of conjugated polyubiquitin chains in the presence of ubiquitin, the ubiquitin-activating enzyme E1, and the appropriate E2 ubiquitin-conjugating enzyme. Substrate proteins that become polyubiquitinated are then subject to degradation by proteasomes. We have previously shown that purified full-length ICP0 acts as an efficient E3 ligase in vitro, producing high-molecular-weight polyubiquitin chains in a RING finger-dependent but substrate-independent manner. In this paper we report on investigations into the factors governing the degradation of PML induced by ICP0 in a variety of in vivo and in vitro assays. We found that ICP0 expression increases the levels of ubiquitinated PML in transfected cells. However, ICP0 does not interact with or directly ubiquitinate either unmodified PML or SUMO-1-modified PML in vitro, suggesting either that additional factors are required for the ICP0-mediated ubiquitination of PML in vivo or that PML degradation is an indirect consequence of some other activity of ICP0 at ND10. Using a transfection-based approach and a family of deletion and point mutations of PML, we found that efficient ICP0-induced PML degradation requires sequences within the C-terminal part of PML and lysine residue 160, one of the principal targets for SUMO-1 modification of the protein.  相似文献   

8.
Review: properties and assembly mechanisms of ND10, PML bodies, or PODs   总被引:19,自引:0,他引:19  
Nuclear domain 10 (ND10), also referred to as PML bodies or PODs, are discrete interchromosomal accumulations of several proteins including PML and Sp100. We describe here developments in the visualization of ND10 and the mechanism of ND10 assembly made possible by the identification of proteins that are essential for this process using cell lines that lack individual ND10-associated proteins. PML is critical for the proper localization of all other ND10-associated proteins under physiological conditions. Introducing PML into a PML -/- cell line by transient expression or fusion with PML-producing cells recruited ND10-associated proteins into de novo formed ND10, attesting to its essential nature in ND10 formation. This recruitment includes Daxx, a protein that can bind PML and is highly enriched in condensed chromatin in the absence of PML. The segregation of Daxx from condensed chromatin to ND10 by increased accumulation of Sentrin/SUMO-1 modified PML suggests the presence of a variable equilibrium between these two nuclear sites. These findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML. Additional adapter proteins are suggested to exist by the behavior of Sp100, and Sp100 will provide the basis for their identification. Further information about the dynamic balance of proteins between ND10 and the actual site of functional activity of these proteins will establish whether ND10 function as homeostatic regulators or only in storage of excess proteins destined for turnover.  相似文献   

9.
The PML protein is a defining constituent of subnuclear structures known as ND10. PML is expressed as a series of primary sequence isoforms through alternative RNA processing. Expression of each of six distinct PML isoforms that differed in their C-terminal domains caused reproducible differences in the number, size, and shape of ND10 in both transformed cell lines and diploid fibroblasts. In each case, PML from the endogenous genes was reorganized to participate with the exogenously expressed PML in the new configuration of ND10. Variation in ND10 number is known to occur during the cell cycle; however, the cell cycle distribution of the transfected cells that displayed these altered ND10 was similar for all six PML isoforms. Given our findings, the precise level of expression of the different PML isoforms under particular physiological conditions will be an important determinant of ND10 organization and function and is a potential point of regulation of PML/ND10 function.  相似文献   

10.
HSV-1 IE protein Vmw110 causes redistribution of PML.   总被引:35,自引:3,他引:32       下载免费PDF全文
R D Everett  G G Maul 《The EMBO journal》1994,13(21):5062-5069
Herpes simplex virus immediate-early protein Vmw110 is required for fully efficient viral gene expression and reactivation from latency. At early times of viral infection, Vmw110 localizes to discrete nuclear structures (known as ND10, PODs or Kr bodies) which contain several cellular proteins, including PML. Interestingly, the unregulated growth of promyelocytic leukaemia cells is correlated with disruption of the normal state of ND10. In this paper we show that: (i) Vmw110 affects the distribution of PML in the cell; (ii) Vmw110 proteins lacking a functional RING finger zinc-binding domain cause the production of striking abnormal cytoplasmic and nuclear structures, some of which contain PML and other ND10 antigens; (iii) a mutant form of Vmw110 which is confined to the cytoplasm appears to result in cytoplasmic PML in some cells; (iv) normal interaction with the nuclear structures requires the C-terminal portion of Vmw110; (v) the C-terminal portion of Vmw110, when linked to a heterologous protein, disrupts the normal distribution of PML. The results suggest that, in normal cells, the PML protein migrates between nucleus and cytoplasm. These observations present an unexpected link between processes involved in the control of cell growth and viral infection and latency.  相似文献   

11.
Many of the events required for productive herpes simplex virus type 1 (HSV-1) infection occur within globular nuclear domains called replication compartments, whose formation appears to depend on interactions with cellular nuclear domains 10 (ND10). We have previously demonstrated that the formation of HSV-1 replication compartments involves progression through several stages, including the disruption of intact ND10 (stage I to stage II) and the formation of PML-associated prereplicative sites (stage III) and replication compartments (stage IV) (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). In this paper, we show that some, but not all, PML isoforms are recruited to stage III foci and replication compartments. Genetic experiments showed that the recruitment of PML isoforms to stage III prereplicative sites and replication compartments requires the localization of the HSV-1 polymerase protein (UL30) to these foci but does not require polymerase catalytic activity. We also examined the stages of viral infection under conditions affecting ND10 integrity. Treatment with factors that increase the stability of ND10, arsenic trioxide and the proteasome inhibitor MG132, inhibited viral disruption of ND10, formation of replication compartments, and production of progeny virus. These results strengthen the previously described correlation between ND10 disruption and productive viral infection.  相似文献   

12.
13.
14.
15.
Herpes simplex virus type 1 (HSV-1) mutants that fail to express the viral immediate-early protein ICP0 have a pronounced defect in viral gene expression and plaque formation in limited-passage human fibroblasts. ICP0 is a RING finger E3 ubiquitin ligase that induces the degradation of several cellular proteins. PML, the organizer of cellular nuclear substructures known as PML nuclear bodies or ND10, is one of the most notable proteins that is targeted by ICP0. Depletion of PML from human fibroblasts increases ICP0-null mutant HSV-1 gene expression, but not to wild-type levels. In this study, we report that depletion of Sp100, another major ND10 protein, results in a similar increase in ICP0-null mutant gene expression and that simultaneous depletion of both proteins complements the mutant virus to a greater degree. Although chromatin assembly and modification undoubtedly play major roles in the regulation of HSV-1 infection, we found that inhibition of histone deacetylase activity with trichostatin A was unable to complement the defect of ICP0-null mutant HSV-1 in either normal or PML-depleted human fibroblasts. These data lend further weight to the hypothesis that ND10 play an important role in the regulation of HSV-1 gene expression.  相似文献   

16.
17.
Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinase-dependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding motif or the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes.  相似文献   

18.
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by +/-2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号